首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model for the non-equilibrium combustion of droplets in rocket engines is developed. This model allows to determine the divergence of combustion rate for the equilibrium and non-equilibrium model. Criterion for droplet combustion deviation from equilibrium is introduced. It grows decreasing droplet radius, accommodation coefficient, temperature and decreases on decreasing diffusion coefficient. Also divergence from equilibrium increases on reduction of droplet radius.Droplet burning time essentially increases under non-equilibrium conditions. Comparison of theoretical and experimental data shows that to have adequate solution for small droplets it is necessary to use the non-equilibrium model.  相似文献   

2.
液体火箭发动机燃烧不稳定性试验研究简述   总被引:4,自引:1,他引:3  
张蒙正 《火箭推进》2005,31(6):12-18
简要回顾了液体火箭发动机燃烧不稳定性研究的进展,主要论述了燃烧不稳定性模拟试验的原理及作用。指出燃烧不稳定性研究与液体火箭发动机研制是相互依存,相互促进的;燃烧不稳定性研究需要重视基础理论研究,重视模拟实验技术的开发及应用。  相似文献   

3.
Throttling of large-thrust liquid rocket engines, which can improve mission adaptability of a carrier rocket, reduce risk and facilitate rocket recovery, is a key technology for current and future space development. This paper summarizes the state of the art and trends of throttling technology for large-thrust liquid rocket engines at home and abroad. According to the working principles of propulsion for rocket engines, throttling the propellant flow rate is a major way of adjusting thrust, and regulation devices along with adjustable injectors are primary measures of throttling propellant flow rates. This paper clarifies the working principles of typical regulation devices and adjustable injectors, introduces the regulation schemes of typical large-thrust engines such as YF-100, RD-170, and SSME, and summarizes the main characteristics of current throttleable large-thrust engines. Finally, critical technologies and development trends of throttling are discussed, including combustion stability and reliable cooling of thrust chambers at low thrust levels, turbopump stability, and stable regulation and precise control in a wide range of operating conditions.  相似文献   

4.
动态燃烧稳定性评定是液体火箭发动机燃烧稳定性鉴定考核的重要途径之一。通过调研国内外液体火箭发动机动态稳定性评定研究的相关资料,并结合CPIA655关于稳定性评定的准则,详细阐述了动态燃烧稳定性评定的研究内容,重点分析了不同扰动方法和动态压力测量的特点,并指出了动态燃烧稳定性评定的基本准则和关键技术。  相似文献   

5.
张玫  张蒙正  付秀文 《火箭推进》2010,36(1):33-37,42
为分析火箭/冲压组合发动机在不同工作模态下的工作特性,对其在没有二次补燃情况下的内流场进行了数值模拟和分析,结果表明:(1)在火箭引射模态,火箭发动机应尽可能工作在其设计状态;(2)为有利于掺混燃烧,在较低的高度、较高的速度下由引射模态转换到亚燃冲压模态可能比较好;(3)在亚燃冲压模态,火箭发动机以某种低工况工作对冲压发动机的点火和火焰稳定是极为有利的;(4)在纯火箭模态,进气道关闭与否对组合发动机的整体性能几乎没有影响;为了获得较高的性能,二次喷管应采用扩张通道。  相似文献   

6.
高频燃烧不稳定性的试验研究方法及面临的挑战   总被引:1,自引:0,他引:1  
采用特征时间法分析了液体火箭发动机燃烧子过程的响应特性,指出了高频燃烧不稳定性试验研究的重点。介绍了国内外典型的高频燃烧不稳定性模拟实验方法与试验装置,认为推力室声学、低压燃烧不稳定性模拟试验以及喷嘴动力学试验研究是目前指导工程设计的主要途径,高压燃烧过程试验和光学测量技术是未来充分认识其激励机理的关键。  相似文献   

7.
液氧/甲烷发动机动力循环方式研究   总被引:3,自引:1,他引:2  
张小平  李春红  马冬英 《火箭推进》2009,35(4):14-20,43
综述了液氧/甲烷发动机的研究进展,分析了液氧/甲烷发动机的特性和应用前景,对比了大推力液氧/甲烷发动机的动力循环方式,提出发动机动力循环方式选择应综合用途、性能、研制难度及使用成本等多方面因素,一次性使用的发动机应采用高性能的高压补燃循环,其中部分甲烷冷却推力室的富燃补燃循环较佳;重复使用的发动机应根据工作次数和工作寿命,重点考虑系统压力低的燃气发生器循环和低压的补燃循环.  相似文献   

8.
China's new-generation launch vehicle LM-5 successfully completed its maiden launch in November 2016.Among the new technologies applied in the launch vehicle,four types of liquid rocket engines attracted extensive attention.These engines feature advanced concepts and technologies such as a staged combustion cycle and expander cycle.The engines are the results of hard effort of more than ten years,which is also an epitome of the development history of China's aerospace industry.This paper gives a brief introduction to the technological schemes,main parameters,development process and application of the four types of engines that powered the new-generation launch vehicle.Finally,proposals for new liquid propulsion technology development in the future in China are presented.  相似文献   

9.
三乙胺和硝酸-27S作为自燃推进剂可应用于火箭发动机中。对这两种自燃推进剂的燃烧性能进行了研究,应用逐步逼近法计算其热力性质,当最佳混合比为4.1,燃烧室压力为4.5MPa时,最佳海平面比冲为2786m/s。通过试验证明了三乙胺和硝酸-27S自燃技术的可行性。  相似文献   

10.
应用CFD方法对氢氧火箭发动机中高频燃烧不稳定性进行了数值模拟,研究分析了不同工况条件下氢喷射温度对燃烧振荡的影响规律,得出了压力振荡频率变化规律及稳定性极限图。结果表明:在一定的氢喷射温度范围内会发生不稳定燃烧,且随着混合比的增大,发生不稳定燃烧的氢喷射温度上限增大;不稳定燃烧振荡主频呈倍频关系,且在氢喷射温度(70K~110K)内,振荡主频最大。  相似文献   

11.
在我国的载人登月技术方案中,为实现软着陆,登月舱需要一种大推力、高性能、多次起动,能够大范围变推力的泵压式发动机.通过研究国外登月用下降级发动机技术发展现状和趋势,基于我国氢氧发动机和低温推进剂空间贮存水平,进行了深度变推发动机的系统方案研究;通过分析比对燃气发生器循环和膨胀循环系统优缺点,确定发动机系统方案为涡轮串联闭式膨胀循环;采用空间可长时间贮存的液氧/甲烷推进剂组合,可满足任务周期要求;根据推力深度调节时对各组合件性能要求,确定喷注器燃烧稳定技术和燃烧室身部传热技术是深度变推发动机研制的核心关键技术.  相似文献   

12.
李文龙  李平  邹宇 《宇航学报》2015,36(3):243-252
为研究烃类推进剂航天动力技术在中国的后续发展和未来应用方向,对比分析煤油、甲烷和丙烷等典型烃类推进剂的物理化学性质和应用特性,简要介绍烃类推进剂航天动力在一次性运载火箭、可重复使用运载器、高性能上面级推进、无毒空间推进和吸气式推进领域的发展动态及应用状况。当前国内外航天动力系统的发展和应用情况表明,以液氧煤油发动机和液氧甲烷发动机为代表的烃类推进剂航天动力将引领未来高性能低成本航天推进系统的发展趋势,依照中国液氧/烃火箭发动机的研制进展和技术水平,以其为核心的新型动力体系在中国未来的天地往返、载人登月和深空探测等多任务适应性方面具有良好应用前景。  相似文献   

13.
LOX/LCH_4变推力发动机技术初步研究   总被引:2,自引:1,他引:1  
对国内外变推力发动机和LOX/LCH4发动机的研究进展进行了总结,在此基础上,提出了一种LOX/LCH4变推力发动机系统方案。在深入分析的基础上,对此方案进行了功率平衡和推力室传热计算,结果表明该系统方案完全能够实现10:1推力变比。LOX/LCH4变推力发动机可以广泛应用于多种运载器和航天器中,对我国探月及后续的载人登月工程均可以提供技术支持,对LOX/LCH4发动机的技术发展和未来的载人登陆火星等任务都具有深远影响。  相似文献   

14.
小推力推进系统起动过程的分析   总被引:4,自引:0,他引:4  
本文对小推力推进系统各部件建立了数学模型,并对此系统进行了数值计算。计算结果表明,在燃烧时滞较大时,该系统响应较慢,发动机参数的超调量较大,达到稳态所需的时间较长;轨控发动机与姿控发动机共用同一个供应系统时,姿控发动机受燃烧时滞的影响更大。减小燃烧时滞有利于提高发动机在起动过程的响应能力和稳定性。在起动阶段,高室压推进系统比低室压推进系统响应快,高室压轨控发动机的参数能较快地稳定下来,但其超调量较大;高室压姿控发动机虽然响应快,但其超调量大,达到稳态所需的时间长于低室压姿控发动机。本文所得结论为提高小推力推进系统在起动过程的响应能力提供了参考。  相似文献   

15.
硝酸与固体燃料燃烧性能计算研究   总被引:1,自引:0,他引:1  
建立了固液火箭发动机燃烧性能计算模型,采用一维化学平衡(ODE)方法对以硝酸为氧化剂的固液火箭发动机燃烧性能进行了初步探讨。计算表明,固液火箭发动机的比冲、特征速度和燃烧温度以及燃烧产物组分等与氧化剂和燃料的配比有密切关系,氧化剂与燃料质量配比在3.75附近时,固液火箭发动机内部的温度较高,燃烧产物组分以及特征速度达到最佳状态,比冲最高。  相似文献   

16.
液体火箭发动机健康监控技术是改进和提高运载火箭、航天器可靠性与安全性的核心技术之一,对其进行研究具有重要的学术价值和工程应用价值。液体火箭发动机健康监控技术的研究主要包括液体火箭发动机故障检测与诊断理论方法、液体火箭发动机健康监控系统两方面。该文介绍了基于模型驱动的方法、基于数据驱动的方法和基于人工智能的方法,阐明了液体火箭发动机故障检测与诊断理论方法的研究现状,通过对美国液体火箭发动机典型健康监控系统的介绍,阐明了液体火箭发动机健康监控系统研究的若干进展及现状,并对液体火箭推进系统健康监控技术的演变趋势作了简要评述。  相似文献   

17.
The transient behaviour of the liquid propellant rocket engine is accompanied by non-stationary heat processes in the combustion chamber, the cooling jacket, and the injector. Based on the analysis of the phenomena, which take place in the liquid propellant rocket engine after cut-off command, the major stages of the curve of the rocket thrust drop were defined. A mathematical model of heat processes is suggested, which includes the calculation of transient heat transfer in the chamber, and the detection of boiling-up of the liquid fuel components in the cooling jacket and in the injector. The determination of the law of the rocket thrust drop and a calculation of the after-effect impulse (AEI) are presented. The calculated transient heat flux the combustion chamber and the transient wall temperatures were compared with experimental data, which were received during starting, and with the impulsive behaviour of the liquid propellant rocket engine.  相似文献   

18.
瞬态时域数据合成冲击响应谱算法研究   总被引:1,自引:0,他引:1  
某液体火箭发动机的部件采用振动台进行模拟冲击环境试验,冲击控制谱的冲击时域波形由软件采用基本波形合成,基本波形有正弦波、合成小波、Chirp波形,而国内常用正弦波合成冲击谱进行冲击环境试验。给出了瞬态冲击数据合成法的算法过程,提取某液体火箭发动机试车过程中的冲击时域数据来合成冲击控制谱的冲击时域波形,计算结果表明算法有效,所合成的冲击时域数据能够满足冲击响应谱的精度要求。  相似文献   

19.
Liquid propellant rocket engines for a launch vehicle are an essential aerospace technology, representing the advanced level of hi-tech in a country. In recent years, China's aerospace industry has made remarkable achievements, and liquid rocket engine technology has also been effectively developed. In this article, the development processes of China's liquid rocket engines are discussed. Then, the performance features of China's new generation liquid rocket engines as well as the flight tests of the new-generation launch vehicles are introduced. Finally, the development direction and the most recent progress of the next generation large-thrust liquid rocket engine is presented.  相似文献   

20.
蓝箭航天液氧甲烷发动机研制进展   总被引:2,自引:2,他引:0       下载免费PDF全文
张小平  严伟 《上海航天》2019,36(6):83-87
探讨了国内外商业航天运载火箭及其发动机的发展情况,研究比较了液氧甲烷、液氧煤油和液氧液氢等推进剂组合,提出液氧甲烷是商业航天、未来可重复使用液体火箭发动机的发展方向和最佳选择。分析了液体火箭发动机推力选择的原则,确定了蓝箭航天液氧甲烷发动机的推力为80 t和8 t。比较了燃气发生器循环、补燃循环及膨胀循环等动力循环方式,选择了燃气发生器循环的技术方案。介绍了蓝箭航天两型液氧甲烷发动机的总体方案、性能指标、技术创新点、用途和研制情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号