首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical navigation for guidance and control of robotic systems is a well-established technique from both theoretic and practical points of view. According to the positioning of the camera, the problem can be approached in two ways: the first one, “hand-in-eye”, deals with a fixed camera, external to the robot, which allows to determine the position of the target object to be reached. The second one, “eye-in-hand”, consists in a camera accommodated on the end-effector of the manipulator. Here, the target object position is not determined in an absolute reference frame, but with respect to the image plane of the mobile camera. In this paper, the algorithms and the test campaign applied to the case of the planar multibody manipulator developed in the Guidance and Navigation Lab at the University of Rome La Sapienza are reported with respect to the eye-in-hand case. In fact, being the space environment the target application for this research activity, it is quite difficult to imagine a fixed, non-floating camera in the case of an orbital grasping maneuver. The classic approach of Image Base Visual Servoing considers the evaluation of the control actions directly on the basis of the error between the current image of a feature and the image of the same feature in a final desired configuration. Both simulation and experimental tests show that such a classic approach can fail when navigation errors and actuation delays are included. Moreover, changing light conditions or the presence of unexpected obstacles can lead to a camera failure in target acquisition. In order to overcome these two problems, a Modified Image Based Visual Servoing algorithm and an Extended Kalman Filtering for feature position estimation are developed and applied. In particular, the filtering shows a quite good performance if target's depth information is supplied. A simple procedure for estimating initial target depth is therefore developed and tested. As a result of the application of all the novel approaches proposed, the experimental test campaign shows a remarkable increase in the robustness of the guidance, navigation and control systems.  相似文献   

2.
空间机械臂视觉相机内参标定技术研究   总被引:1,自引:0,他引:1  
针对空间机械臂视觉相机的任务需求与配置,内参标定技术是相机高精度获取合作目标位置、方向等运动信息的首要前提和重要保障。文章设计了一种基于二维平面靶的机械臂相机内参标定方法,用于解算焦距、主点坐标、畸变系数等。首先,利用相机拍摄多幅平面靶图像,求解平面靶与相机图像之间的映射矩阵;其次,构建相机内参约束方程;再次,利用特征值分解,解算焦距、主点坐标等参数值;最后,引入径向、切向畸变构建非线性模型,将解得的内参作为初值,利用Levenberg-Marquardt优化算法即可计算出相机内参最优解。试验结果表明,该方法完全适用于机械臂相机内参标定,标定结果均满足机械臂视觉相机获取合作目标三维位姿的测量精度要求。  相似文献   

3.
A free floating platform is realized with a pneumatic suspension system which enables a two-dimensional test of complex space operations, such as rendezvous and docking. The platform is equipped with a IMU and actuated via cold gas thrusters. In addition, an on-board camera is used to acquire a target and its image is processed for evaluating the control actions needed to reach it. A technique for determining the relative position and velocity with respect to target using the same visual device is proposed and realized. The novel algorithms and relevant experimental results are presented. The tested accuracy of the relative navigation system is not very high, but the guidance algorithm, which is image based and has just a weak dependence on the position information, is robust enough to perform a successful maneuver. The error between the final acquired target image and the desired final target image is of the order of one pixel, notwithstanding all the testbed disturbances.  相似文献   

4.
视觉系统是空间机械臂的重要组成部分,空间机械臂除开环控制外的所有工作模式都不能离开视觉系统的引导和辅助而独立实现。文章以建立满足空间机械臂实际应用需求的视觉系统为目标,提出通过分布在不同空间位置的多个相机的协同工作扩展并增强视觉系统的监视和测量能力,并从系统组成、工作模式、测量方式等多方面完成空间机械臂视觉系统方案设计。仿真试验结果表明,目标三维位姿的测量误差与视觉标记点检测结果的误差近似成线性关系,视觉标记点检测的准确性对目标位姿测量的精度具有重要影响。室内环境试验结果表明,在视觉系统的引导下机械臂能够自主完成对目标的定位和捕获,视觉系统满足空间机械臂大范围运动和精准操作任务的应用需求。  相似文献   

5.
针对采用两级控制的大型柔性空间机械臂轨迹跟踪与振动抑制问题,文章在对系统频域进行分析的基础上,提出了一种应用滤波的振动抑制方法,即通过降低中央控制器输出信号的频率减少伺服跟踪的动态误差。此方法能够有效提高机械臂末端解析点(POR)的动态跟踪精度,并抑制机械臂振动。文章通过某大型机械臂全柔性系统仿真算例对方法的有效性进行了验证,可为机械臂控制和振动抑制提供借鉴。  相似文献   

6.
Control of an elastic space platform-based flexible manipulator with four links, two free to slew while the other two permitted to deploy, is studied using two procedures: (i) nonlinear Feedback Linearization Technique (FLT) applied to rigid degrees of freedom with flexible generalized coordinates passively regulated through coupling; (ii) rigid as well as flexible degrees of freedom controlled through FLT and Linear Quadratic Regulator (LQR), respectively. Results suggest the FLT control to be quite effective even for flexible degrees of freedom. The combination of FLT and LQR further improves the controller's performance.  相似文献   

7.
Very Large Space Structures (VLSS) are challenging systems to be controlled, due to their high flexibility. In particular, rapid attitude maneuvers can determine great oscillations on the flexible elements of a spacecraft (solar wings, antennas, booms). On account of this, in the last decades many researchers have developed different strategies to effectively damp the elastic vibrations by means of active vibration devices (such as piezo-electric patches) or by means of robust control algorithms. The approach suggested in this paper is different, since neither additional devices nor complex control laws are introduced. In fact, the complete model of the system (including rigid, elastic and orbital dynamics, coupled with control actions) is controlled by the non-linear attitude controller named state dependent Riccati equation, which will be based on a simplified version of the spacecraft model. The task to reduce the mutual interaction between rigid attitude and flexible dynamics is entirely transferred to a modification of the desired trajectory that must be tracked. This command shaping technique is based on the knowledge of the parameters (inertial and elastics) of the VLSS. Unfortunately these parameters are not always exactly known and, however, they may change over the time. On account of this a Monte Carlo analysis has been also performed, showing the robustness of the proposed control strategy to the structural uncertainties. The numerical simulations prove that this strategy, based on the joint application of two well-known yet simple techniques, produces accurate and robust results.  相似文献   

8.
Space manipulators are complex systems, composed by robotic arms accommodated on an orbiting platform. They can be used to perform a variety of tasks: launch of satellites, retrieval of spacecraft for inspection, maintenance and repair, movement of cargo and so on. All these missions require extreme precision. However, in order to respect the mass at launch requirements, manipulators arms are usually very light and flexible, and their motion involves significant structural vibrations, especially after a grasping maneuver. In order to fulfill the maneuvers of space robotic systems it is hence necessary to properly model the forces acting on the space robot, from the main terms, such as the orbital motion, to the second order perturbations, like the gravity gradient and the orbital perturbations; also flexible excitation of the links and of the joints can be of great importance in the manipulators dynamics. The case is furthermore complicated by the fact that the manipulator, together with its supporting spacecraft, is an unconstrained body. Therefore the motion of any of its parts affects the entire system configuration. The governing equations of the dynamics of such robotic systems are highly nonlinear and fully coupled. The present paper aims at designing and studying active damping strategies and relevant devices that could be used to reduce the structural vibrations of a space manipulator with flexible links during its on orbit operations. In particular an optimized adaptive vibration control via piezoelectric devices is proposed. The number of piezoelectric devices, their placement and operational mode should be correctly chosen in order to obtain maximum performance in terms of elastic oscillations reduction and power consumption. Even though an optimal placement cannot have a universal validity, since it depends on the type of maneuver and on the overall inertial and geometrical characteristics, an approach to solve the problem is proposed.  相似文献   

9.
针对失稳目标捕获后航天器组合体的位姿调整与稳定问题,提出一种组合体角动量转移与振动抑制复合规划方法。首先建立了同时考虑了空间机械臂、目标卫星太阳翼、服务卫星太阳翼等柔性构件的航天器组合体动力学模型。然后提出角动量转移优化方法,规划机械臂最终构型,保证组合体相对稳定后的角速度最小;基于粒子群算法设计了机械臂最优抑振轨迹规划方法,抑制角动量转移过程中的机械臂和太阳翼的柔性振动。最后通过数值仿真验证了规划方法的有效性。仿真结果表明,该方法能够有效实现组合体的角动量转移,并显著降低组合体的柔性振动,具有工程实用性。  相似文献   

10.
空间机械臂位形与基座姿态协同控制研究   总被引:1,自引:0,他引:1  
税海涛  李迅  马宏绪 《宇航学报》2011,32(8):1708-1714
针对自由飘浮空间机械臂与基座的运动耦合问题,提出了一种基于不变流形的机械臂位形与基座姿态协同控制算法。在分析了系统可控性的基础上,构造了线性状态反馈下系统的不变流形,并设计了分段连续的镇定控制器。该控制器先将系统状态镇定到不变流形之上,然后沿该流形将系统状态调整到期望值。仿真结果表明,在系统可控的条件下,所提出的协同控制算法能将机械臂位形与基座姿态同时调整到期望状态。  相似文献   

11.
Space graspers are complex systems, composed by robotic arms placed on an orbiting platform. In order to fulfil the manoeuvres’ requirements, it is necessary to properly model all the forces acting on the space robot. A fully nonlinear model is used to describe the dynamics, based on a multibody approach. The model includes the orbital motion, the gravity gradient, the aerodynamic effects, as well as the flexibility of the links. The present paper aims to design, thanks to nonlinear optimization algorithms, a class of manoeuvres that, given the same target to be grasped, are characterized by different mission objectives. The grasping mission can be performed with the objective to minimize the power consumption. Collision avoidance constraints can be also added when the target is equipped with solar panels or other appendices. In some cases, large elastic displacements should be expected, possibly leading to an inaccurate positioning of the end-effector. Therefore, different design strategies can require that the manoeuvre is accomplished with minimum vibrations’ amplitude at the end-effector. Performance of the different strategies is analyzed in terms of control effort, trajectory errors, and flexible response of the manipulator.  相似文献   

12.
空间柔性臂的解耦动力学模型及其控制   总被引:1,自引:0,他引:1  
王光庆  郭吉丰 《宇航学报》2004,25(5):580-582,586
提出了一种空间柔性结构通过关节电机同时实现轨迹控制和振动抑制的方法。针对单连杆空间柔性臂,采用非约束模态法建立了刚柔解耦动力学模型;提出了基于应变反馈的PID控制策略,并设计了PID/应变反馈复合控制器,同时实现对柔性臂末端运动轨迹的定位控制和弹性振动抑制控制;仿真结果验证了该控制策略的可行性。  相似文献   

13.
Space vehicles are often characterized by highly flexible appendages, with low natural frequencies which can generate coupling phenomena during orbital maneuvering. The stability and delay margins of the controlled system are deeply affected by the presence of bodies with different elastic properties, assembled to form a complex multibody system. As a consequence, unstable behavior can arise. In this paper the problem is first faced from a numerical point of view, developing accurate multibody mathematical models, as well as relevant navigation and control algorithms. One of the main causes of instability is identified with the unavoidable presence of time delays in the GNC loop. A strategy to compensate for these delays is elaborated and tested using the simulation tool, and finally validated by means of a free floating platform, replicating the flexible spacecraft attitude dynamics (single axis rotation). The platform is equipped with thrusters commanded according to the on–off modulation of the Linear Quadratic Regulator (LQR) control law. The LQR is based on the estimate of the full state vector, i.e. including both rigid – attitude – and elastic variables, that is possible thanks to the on line measurement of the flexible displacements, realized by processing the images acquired by a dedicated camera. The accurate mathematical model of the system and the rigid and elastic measurements enable a prediction of the state, so that the control is evaluated taking the predicted state relevant to a delayed time into account. Both the simulations and the experimental campaign demonstrate that by compensating in this way the time delay, the instability is eliminated, and the maneuver is performed accurately.  相似文献   

14.
针对空间绳系机器人超近距视觉伺服中相对位姿无法测量的问题,在建立机器人视觉系统非线性量测模型的基础上,提出一种基于直线跟踪的混合视觉伺服控制方法,利用帆板支架边缘线图像特征跟踪相对位姿,利用基座具有较大误差的量测信息保证控制系统的稳定性。仿真试验结果表明:在仅能获得帆板支架边缘线图像信息的情况下,设计的超近距逼近控制方法能够保证空间绳系机器人稳定到达目标卫星的帆板支架处,并满足捕获条件。  相似文献   

15.
楚中毅  任善永 《宇航学报》2013,34(6):748-754
在空间探测任务中,为了避免卫星平台剩磁对空间待测信息的干扰影响,需采用轻质的伸杆机构支撑各类探测载荷远离卫星本体,而伸杆的弹性振动不可避免地会耦合作用到卫星本体,从而降低卫星本体的姿态控制精度和稳定度。针对此问题,提出了一种基于伸杆最优指令整形结合本体自适应扰动抑制滤波器的复合振动控制策略,即采用指令整形技术抑制柔性伸杆的弹性振动,同时设计自适应扰动抑制滤波器进一步抵消柔性伸杆残余振动对本体的干扰影响,最后在搭建的半物理仿真实验平台上对控制方法进行了实验验证。结果表明:此方法在有效抑制柔性伸杆残余振动的基础上,通过干扰抵消和抑制的控制策略可显著提高此类航天器的姿态控制精度和稳定度。  相似文献   

16.
定义目标航天器图像形心与像平面中心为跟踪误差,并将该像平面误差直接引入跟踪控制闭环,提出一种增益切换的目标航天器跟踪PD控制律,在由推力器开关控制特性定义开关函数的基础上,给出PD控制器增益切换策略。由于直接使用目标航天器在像平面中的视觉特征误差量,避免了视觉相机内参数标定和目标航天器位姿信息求解等过程,简化了服务航天器的系统配置,同时控制器增益切换实现对测量误差、推力器偏差、转动惯量偏差以及干扰力矩等多种不确定性因素进行补偿,提高了跟踪控制系统稳定性及抗干扰性能。最后,基于Lyapunov稳定性理论给出控制器参数估算方法,并理论分析了增益切换PD控制律的收敛性,数学仿真表明该控制律能够对复杂机动目标以及考虑多种不确定性因素等情况进行快速跟踪,校验了视觉跟踪控制策略的有效性及对多类型不确定性的鲁棒性。  相似文献   

17.
This paper proposes a method for decreasing jerk and increasing Maximum Allowable Load (MAL) of nonholonomic Wheeled Mobile Manipulator (WMM) considering flexibility of joints in singular conditions. The full dynamic model of nonholonomic WMM contains simultaneous operation of mobile base and manipulator with joint flexibility (in wheels and manipulator) which is presented here. The problem is formulated in terms of the optimal control which leads to a two point boundary value problem. Then Sobol's sensitivity analysis method is applied to determine the optimal values of flexible joint constants subject to the jerk minimization. To illustrate the proposed method, two categories of conditions are considered: conditions containing non-singular configuration and the singular conditions. An example is explained for non-singular condition of nonholonomic WMM in presence of obstacle in which a complex path is generated but there is no singularity in robot configuration. Some examples of occurring singular configuration in final point and moving boundary condition is also presented. The results show that flexibility of the joints near to singular configuration normalizes the sudden movement and jerk implied to actuators. That is why using a rotational spring with a low stiffness coefficient could be helpful to decrease the high jerk and increase the maximum allowable load in mobile robots.  相似文献   

18.
参数不确定空间机械臂系统的自适应鲁棒性联合控制   总被引:3,自引:1,他引:3  
陈力  刘延柱 《宇航学报》1999,20(3):96-100
本文讨论载体位置与姿态均不受控制的自由浮动空间机械臂系统的控制问题,基于增广变量法,提出当机械臂与载荷参数不确定时自由浮动空间机械臂追踪惯性空间期望轨迹的自适应棒性联合控制方法。通过仿真运算,证实了方法的有效性。  相似文献   

19.
嫦娥五号探测器月面采样封装任务需利用采样机械臂及其末端执行机构夹持样品容器,为克服非结构化月面环境对机械臂控制造成的不可知影响,确保精确夹持样品容器,提出并设计了一种视觉伺服样品容器夹持的控制方法和系统。系统通过固定安装相机和"眼在手"相机协同获取机械臂末端执行机构以及样品容器特征,采用扩展卡尔曼滤波算法对机械臂末端执行机构位姿的控制参数进行估计,消除控制位姿的轨迹抖动,实现了对样品容器的精确夹持。最后,通过分析在轨月球样品容器被夹持过程的数据和图像,验证了该视觉伺服控制方法和系统设计正确有效。  相似文献   

20.
一种可伸缩空间机械臂及其应用分析   总被引:1,自引:0,他引:1  
介绍一种能够完成多关节型空间机械臂所能承担的大部分空间任务 ,而且应用更简便的可伸缩空间机械臂 ,对其空间应用做出了一些设想 ,简单讨论了其应用的一些相关问题 ,肯定了其可行性和实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号