首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IntroductionLocomotor and some resistance exercises in space require a gravity replacement force in order to allow 1g-like ground reaction forces to be generated. Currently bungee cords, or other loading devices, interface with the crew member through a harness with a waist belt and shoulder straps. Crew members often find the application of the required loads to be uncomfortable, particularly at the hips.MethodsAn experimental harness was built that differed from previous in-flight designs by having a wider, moldable waist belt and contoured shoulder straps with additional padding. Eight subjects ran at 100% body weight (BW) loading for a total duration of 30 min per day on 12 days over a 3-week period in simulated 0-g conditions using horizontal suspension. A 100 mm Visual Analog Scale (VAS)1 was used to assess harness-related and lower extremity discomfort at the end of each run.ResultsThe overall rating of harness discomfort decreased from 27 mm on the 100 mm scale on day 1 to 10 mm on day 12, with significant decreases recorded for the back and hip regions as well as the overall harness.DiscussionThe experimental harness allows for repeated exposure to 30-minute bouts of 100% BW loaded simulated 0-g running with levels of discomfort less than 30 mm on a VAS scale of 0–100 mm. We believe that the use of such a harness during on-orbit exercise countermeasures may allow exercise to be performed at levels which are more effective in preventing bone and muscle loss.  相似文献   

2.
An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.  相似文献   

3.
Beyond the Earth's atmosphere, galactic cosmic radiation (GCR) and solar energetic particles (SEPs) are a significant hazard to both manned and robotic missions. For long human missions on the lunar surface (months to a year) a radiation shelter is needed for dose mitigation and emergency protection in case of solar events. This paper investigates the interaction of source protons of solar events like those of February 1956 that emitted many fewer particles with energies up to 1000 MeV and of the October 1989 event of lower protons energy but higher fluence, with the lunar regolith and aluminum shielding of a lunar shelter. The shelter is 5 m in diameter and has a footprint of 5×8 m and a 10 cm thick aluminum support structure, however, actual thickness could be much smaller (~1–2 cm) depending on the weight of the regolith shielding piled on top. The regolith is shown to be slightly more effective than aluminum. Thus, the current results are still applicable for a thinner aluminum structure and increased equivalent (or same mass) thickness of the regolith. The shielding thicknesses to reduce the dose solely due to solar protons in the lunar shelter below those recommended by NASA to astronauts for 30 day-operation in space (250 mSv) and for radiation workers (50 mSv) are determined and compared. The relative attenuation of incident solar protons with regolith shielding and the dose estimates inside the shelter are calculated for center seeking, planar, and isotropic incidence of the source protons. With the center seeking incidence, the dose estimates are the highest, followed by those with isotropic incidence, and the lowest are those with the planar incidence.  相似文献   

4.
This paper presents work performed for a study investigating the ability of different flexible materials to induce fragmentation of a hypervelocity projectile. Samples were chosen to represent a wide range of industrially available types of flexible materials like ceramic, aramid and carbon fabrics as well as a thin metallic mesh. Impact conditions and areal density were kept constant for all targets. Betacloth and multi-layer insulation (B-MLI) are mounted onto the targets to account for thermal system engineering requirements. All tests were performed using the Space light-gas gun facility (SLGG) of the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI. Projectiles were aluminum spheres with 5 mm diameter impacting at approximately 6.3 km/s. Fragmentation was evaluated using a witness plate behind the target. An aramid and a ceramic fabric lead the ranking of fabrics with the best projectile fragmentation and debris cloud dispersion performance. A comparison with an equal-density rigid aluminum plate is presented. The work presented can be applied to optimize the micrometeoroid and space debris (MM/SD) shielding structure of inflatable modules.  相似文献   

5.
Small satellites, weighting between 100 and 200 kg, have witnessed increasing use for a variety of space applications including remote sensing constellations and technology demonstrations. The energy storage/stored power demands of most spacecraft, including small satellites, are currently accommodated by rechargeable batteries—typically nickel–cadmium cells (specific energy of 50 Wh kg−1), or more recently lithium-ion cells (150 Wh kg−1). High energy density is a primary concern for spacecraft energy storage design, and these batteries have been sufficient for most applications. However, constraints on the allowable on-board battery size have limited peak power performance such that the maximum power supply capability of small satellites currently ranges between only 70 and 200 W. This relatively low maximum power limits the capabilities of small satellites in terms of payload design and selection. In order to enhance these satellites' power performance, the research reported in this paper focused on the implementation of super-capacitors as practical rechargeable energy storage medium, and as an alternative to chemical batteries. Compared to batteries, some super-capacitors are able to supply high power at high energy-efficiency, but unfortunately they still have a very low energy density (5–30 Wh kg−1). However, the provision of this high power capability would considerably widen the range of small satellite applications.  相似文献   

6.
Field electron emission from aligned multiwalled carbon nanotubes has been assessed to determine if the performance, defined by power consumption, lifetime and emission current, is suitable for use in spacecraft charge neutralisation for field emission electric propulsion (FEEP). Carbon nanotubes grown by chemical vapour deposition (CVD) were mounted on a dual in line chip with a macroscopic (nickel mesh) extractor electrode mounted ~1 mm above the tubes. The nanotubes’ field emission characteristics (emission currents, electron losses and operating voltage) were measured at ~10?4 Pa. An endurance test of one sample, running at a software-controlled constant emission current lasted >1400 h, approaching the longest known FEEP thruster lifetime. The emission corresponds to a current density of ~10 mA/cm2 at a voltage of 150 V. These results, implementing mature extractor-electrode geometry, indicate that carbon nanotubes have considerable potential for development as robust, low-power, long-lived electron emitters for use in space.  相似文献   

7.
The numerical simulation and the measurement of electromagnetic shielding at microwave frequencies of thermal protection system for hypersonic vehicles is presented using nested reverberation chamber. An example of a possible thermal protection system for a re-entry vehicle is presented. This system based on carbon material is electromagnetically characterized. The characterization takes into account not only the materials but also the final assembly configuration of the thermal protection system. The frequency range is 2–8 GHz. The results of measurements and simulations show that the microwave shielding effectiveness of carbon materials is above 60 dB for a single tile and that the tile inter-distance is able to downgrade the shielding effectiveness on the average to about 40 dB.  相似文献   

8.
Predictions of rain rate and rain attenuation are the most vital steps when analyzing a satellite link operating at frequencies above 10 GHz. Rain attenuation at 12.594 GHz over a satellite path link was measured for the period of 3 years (i.e. January 2002 to December 2004) at Bangkok (13.7°N, 100.7°E). In this paper, a comparison between the current methodologies available to model the impact of rain in earth-space propagation and a dataset of 3 years of rain accumulation with a sampling period of 1 min is made.  相似文献   

9.
We assessed hemodynamic responses induced by orthostatic and mental stressors, using passive head up tilt (HUT) and mental arithmetic (MA), respectively. The 15 healthy males underwent three protocols: (1) HUT alone, (2) MA in supine position and (3) MA+HUT, with sessions randomized and ≥2 weeks apart. In relation to baseline, HUT increased heart rate (HR) (+20.4±7.1 bpm; p<0.001), mean blood pressure (MBP) (+4.7±11.3 mmHg; p<0.05), diastolic blood pressure (DBP) (+6.1±11.6 mmHg; p<0.05) and total peripheral resistance (TPR) (+155±232 dyne*s/cm5; p<0.001) but decreased stroke volume (SV) (?33.1±13.4 ml; p<0.001) and cardiac output (CO) (?0.6±1.0 l/min; p<0.01). MA increased HR (+8.0±6.0 bpm; p<0.001), systolic blood pressure (SBP) (+9.0±7.7 mmHg; p<0.001), MBP (+10.0±6.5 mmHg; p<0.001), DBP (+9.5±7.2 mmHg; p<0.001) and CO (+0.6±0.8 l/min; p<0.01). MA+HUT increased HR (+28.8±8.4 bpm; p<0.001), SBP (+4.6±14.3 mmHg; p<0.05), MBP (+11.2±11.6 mmHg; p<0.001), DBP (+13.5±10.1 mmHg; p<0.001) and TPR (+160±199 dyne*s/cm5; p<0.001) but SV (?34.5±14.6 ml; p<0.001) decreased. Mental challenge during orthostatic challenge elicited greater increases in heart rate, despite similar reductions in stroke volume such as those during orthostatic stress alone. Overall, cardiac output decreases were less with combinations of mental and orthostatic challenges in comparison to orthostasis alone. This would suggest that carefully chosen mental stressors might affect orthostatic responses of people on standing up. Therefore, additional mental loading could be a useful countermeasure to alleviate the orthostatic responses of persons, particularly in those with histories of dizziness on standing up or on return to earth from the spaceflight environment of microgravity.  相似文献   

10.
《Acta Astronautica》2007,60(10-11):939-945
The NASA/JSC sodium potassium (NaK) RORSAT coolant source and propagation model has been extended to 1 mm in diameter via a size distribution, which is an inverse power law fit that has been modified to damp out in the large size regime. This function matches the observed Haystack NaK population down to diameters of about 6 mm. The extrapolated function takes the population to arbitrarily small sizes all the while retaining the mass dominance of the 1–3 cm droplets that is observed in the Haystack data. This result is physically satisfying since the mechanism of NaK ejection appears to be a nonviolent release at low relative velocities. We propose that any NaK particles smaller than about 1 mm that exist would not be due to that mechanism. Instead, we show that such a population could be the result of subsequent collisions of NaK droplets with larger resident space objects and the micrometeoroid population. Our preliminary analysis shows that collisions between these populations are likely in the time period of 1980 through present-day. Though the result of such collisions is generally unknown it is probable that some ejecta of NaK enter the low Earth orbit (LEO) environment as a result. It is these secondary NaK droplets/particles that we contend are the likely impactors noted on returned surfaces.  相似文献   

11.
A new and innovative type of gridded ion thruster, the “Dual-Stage 4-Grid” or DS4G concept, has been proposed and its predicted high performance validated under an ESA research, development and test programme. The DS4G concept is able to operate at very high specific impulse and thrust density values well in excess of conventional 3-grid ion thrusters at the expense of a higher power-to-thrust ratio. This makes it a possible candidate for ambitious missions requiring very high delta-V capability and high power. Such missions include 100 kW-level multi-ton probes based on nuclear and solar electric propulsion (SEP) to distant Kuiper Belt Object and inner Oort cloud objects, and to the Local Interstellar medium. In this paper, the DS4G concept is introduced and its application to this mission class is investigated. Benefits of using the DS4G over conventional thrusters include reduced transfer time and increased payload mass, if suitably advanced lightweight power system technologies are developed.A mission-level optimisation is performed (launch, spacecraft system design and low-thrust trajectory combined) in order to find design solutions with minimum transfer time, maximum scientific payload mass, and to explore the influence of power system specific mass. It is found that the DS4G enables an 8-ton spacecraft with a payload mass of 400 kg, equipped with a 65 kW nuclear reactor with specific mass 25 kg/kW (e.g. Topaz-type with Brayton cycle conversion) to reach 200 AU in 23 years after an Earth escape launch by Ariane 5. In this scenario, the optimum specific impulse for the mission is over 10,000 s, which is well within the capabilities of a single 65 kW DS4G thruster. It is also found that an interstellar probe mission to 200 AU could be accomplished in 25 years using a “medium-term” SEP system with a lightweight 155 kW solar array (2 kg/kW specific mass) and thruster PPU (3.7 kg/kW) and an Earth escape launch on Ariane 5. In this case, the optimum specific impulse is lower at 3500 s which is well within conventional gridded ion thruster capability.  相似文献   

12.
The present paper describes thrust measurement results for an arcjet thruster using Dimethyl ether (DME) as the propellant. DME is an ether compound and can be stored as a liquid due to its relatively low freezing point and preferable vapor pressure. The thruster successfully produced high-voltage mode at DME mass flow rates above 30 mg/s, whereas it yielded low-voltage mode below 30 mg/s. Thrust measurements yielded a thrust of 0.15 N and a specific impulse of 270 s at a mass flow rate of 60 mg/s with a discharge power of 1300 W. The DME arcjet thruster was comparable to a conventional one for thrust and discharge power.  相似文献   

13.
In this paper we calculate the effect of atmospheric dust on the orbital elements of a satellite. Dust storms that originate in the Martian surface may evolve into global storms in the atmosphere that can last for months can affect low orbiter and lander missions. We model the dust as a velocity-square depended drag force acting on a satellite and we derive an appropriate disturbing function that accounts for the effect of dust on the orbit, using a Lagrangean formulation. A first-order perturbation solution of Lagrange's planetary equations of motion indicates that for a local dust storm cloud that has a possible density of 8.323×10−10 kg m−3 at an altitude of 100 km affects the orbital semimajor axis of a 1000 kg satellite up −0.142 m day−1. Regional dust storms of the same density may affect the semimajor axis up to of −0.418 m day−1. Other orbital elements are also affected but to a lesser extent.  相似文献   

14.
The history of the deployment of nuclear reactors in Earth orbits is reviewed with emphases on lessons learned and the operation and safety experiences. The former Soviet Union's “BUK” power systems, with SiGe thermoelectric conversion and fast neutron energy spectrum reactors, powered a total of 31 Radar Ocean Reconnaissance Satellites (RORSATs) from 1970 to 1988 in 260 km orbit. Two of the former Soviet Union's TOPAZ reactors, with in-core thermionic conversion and epithermal neutron energy spectrum, powered two Cosmos missions launched in 1987 in ~800 km orbit. The US’ SNAP-10A system, with SiGe energy conversion and a thermal neutron energy spectrum reactor, was launched in 1965 in 1300 km orbit. The three reactor systems used liquid NaK-78 coolant, stainless steel structure and highly enriched uranium fuel (90–96 wt%) and operated at a reactor exit temperature of 833–973 K. The BUK reactors used U-Mo fuel rods, TOPAZ used UO2 fuel rods and four ZrH moderator disks, and the SNAP-10A used moderated U-ZrH fuel rods. These low power space reactor systems were designed for short missions (~0.5 kWe and ~1 year for SNAP-10A, <3.0 kWe and <6 months for BUK, and ~5.5 kWe and up to 1 year for TOPAZ). The deactivated BUK reactors at the end of mission, which varied in duration from a few hours to ~4.5 months, were boosted into ~800 km storage orbit with a decay life of more than 600 year. The ejection of the last 16 BUK reactor fuel cores caused significant contamination of Earth orbits with NaK droplets that varied in sizes from a few microns to 5 cm. Power systems to enhance or enable future interplanetary exploration, in-situ resources utilization on Mars and the Moon, and civilian missions in 1000–3000 km orbits would generate significantly more power of 10's to 100's kWe for 5–10 years, or even longer. A number of design options to enhance the operation reliability and safety of these high power space reactor power systems are presented and discussed.  相似文献   

15.
《Acta Astronautica》2008,62(11-12):995-1001
A mission to the surface of Venus would have high scientific value, but most electronic devices and sensors cannot operate at the 450 °C ambient surface temperature of Venus. Power and cooling systems were analyzed for Venus surface operation. A radioisotope power and cooling system was designed to provide electrical power for a probe operating on the surface of Venus. For a mission duration of substantial length, the use of thermal mass to maintain an operable temperature range is likely impractical, and active refrigeration may be required to keep components at a temperature below ambient. Due to the high thermal convection of the high-density atmosphere, the heat rejection temperature was assumed to be at a 500 °C radiator temperature, 50 °C above ambient. The radioisotope Stirling power converter designed produces a thermodynamic power output capacity of 478.1 W, with a cooling power of 100 W. The overall efficiency is calculated to be 23.36%. The mass of the power converter is estimated at approximately 21.6 kg.  相似文献   

16.
On 14 May 2009 the European Space Agency launched 2 space observatories: Herschel (with a 3.5 m mirror it is the largest space telescope ever) will collect long-wavelength infrared radiation and will be the only space observatory to cover the spectral range from far-infrared to sub-millimetre wavelengths, and Planck will look back at the dawn of time, close to the Big Bang, and will examine the Cosmic Microwave Background (CMB) radiation to a sensitivity, angular resolution and frequency range never achieved before. This paper will present the Flight Dynamics, mission analysis challenges and flight results from the first 3 months of these missions.Both satellites were launched on the same Ariane 5 and travelled to the L2 Lagrange point of the sun–earth system 1.5 million km from the earth in the opposite direction of the sun. There they were injected to a quasi-halo orbit (Herschel) with the dimension of typically 750,000 km×450,000 km, and a Lissajous orbit (Planck) of 300,000 km×300,000 km.In order to reach these Lissajous orbits it is mandatory to perform large trajectory correction manoeuvres during the first days of the mission. Herschel had its main manoeuvres on the first day. Planck had to be navigated on the first day and by a mid-course correction manoeuvre, the L2 orbit insertion manoeuvre was planned on day 50. If these slots were missed, fuel penalties would rapidly increase.This posed a heavy load on the operations teams because both spacecrafts have to be thoroughly checked out and put into the correct modes of their attitude control systems during the first hours after launch.The sequence of events will be presented and explained and the orbit determination results as well as the manoeuvre planning will be emphasised.  相似文献   

17.
More than 60 years after the late Nobel laureate Hannes Alfvén had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto–hydrodynamic interactions in a wave like fashion, the technical implementation of Alfvén waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors.Consequently improved since then, the name of the latest concept, relying on magneto-acoustic waves to accelerate electric conductive matter, is MOA2—Magnetic field Oscillating Amplified Accelerator. Based on computer simulations, which were undertaken to get a first estimate on the performance of the system, MOA2 is a corrosion free and highly flexible propulsion system, whose performance parameters might easily be adapted in operation, by changing the mass flow and/or the power level. As such the system is capable of delivering a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. First tests—that are further described in this paper—have been conducted successfully with a 400 W prototype system at an ambient pressure of 0.20 Pa, delivered 9.24 mN of thrust at 1472 s ISP, thereby underlining the feasibility of the concept.Based on these results, space propulsion is expected to be a prime application for MOA2—a claim that is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an ‘afterburner system’ for Nuclear Thermal Propulsion. However, MOA2 has so far seen most of its R&D impetus from terrestrial applications, like coating, semiconductor implantation and manufacturing as well as steel cutting. Based on this observation, MOA2 resembles an R&D paradigm buster, as it is the first space propulsion system, whose R&D is driven primarily by its terrestrial applications. Different terrestrial applications exist, but the most successful scenarios so far revolve around MOA2's unique features with respect to high throughput/low target temperature coatings on sensitive materials. In combination with its intrinsic high flexibility, MOA2 is highly suited for a common space-terrestrial application research and utilisation strategy.This paper presents the recent developments of the MOA2 R&D activities at Q2 Technologie(s), the company in Vienna, Austria, which has been set up to further develop and test the magneto-acoustic wave technology and its applications.  相似文献   

18.
Introduction: This joint US–Russian work aims to establish a methodology for assessing cardiac function in microgravity in association with manipulation of central circulating volume. Russian Braslet-M (Braslet) occlusion cuffs were used to temporarily increase the volume of blood in the lower extremities, effectively reducing the volume in central circulation. The methodology was tested at the International Space Station (ISS) to assess the volume status of crewmembers by evaluating the responses to application and release of the cuffs, as well as to modified Valsalva and Mueller maneuvers. This case study examines the use of tissue Doppler (TD) of the right ventricular (RV) free wall. Results: Baseline TD of the RV free wall without Braslet showed early diastolic E′ (16 cm/s), late diastolic A′ (14 cm/s), and systolic S′ (12 cm/s) velocities comparable with those in normal subjects on Earth. Braslet application caused 50% decrease of E′ (8 cm/s), 45% increase of A′, and no change to S′. Approximately 8 beats after the Braslet release, TD showed E′ of 8 cm/s, A′ of 12 cm/s, and S′ of 13 cm/s. At this point after release, E′ did not recover to baseline values while l A′ and S′ did recover. The pre-systolic cross-sectional area of the internal jugular vein without Braslet was 1.07 cm2, and 1.13 cm2 10 min after the Braslet was applied. The respective cross-sectional areas of the femoral vein were 0.50 and 0.54 cm2. The RV myocardial performance Tei index was calculated by dividing the sum of the isovolumic contraction time and isovolumic relaxation time by the ejection time ((IVCT+IVRT)/ET); baseline and Braslet-on values for Tei index were 0.25 and 0.22, respectively. Braslet Tei indices are within normal ranges found in healthy terrestrial subjects and temporarily become greater than 0.4 during the dynamic Braslet release portion of the study. Conclusions: TD modality was successfully implemented in space flight for the first time. TD of RV revealed that the Braslet influenced cardiac preload and that fluid was sequestered in the lower extremity interstitial and vascular space after only 10 min of application. This report demonstrates that Braslet application has an effect on RV physiology in long-duration space flight based on TD, and that this effect is in part due to venous hemodynamics.  相似文献   

19.
Ir–Zr co-deposition coatings with 71 at% Zr were deposited on graphite by double glow plasma at 1073–1123 K. The structure and composition of the coatings were confirmed by FE-SEM, XRD, XPS and EDS. The hardness and the elastic modulus of the coatings were estimated by nanoindentation instrument. The adhesion strength between the coating and the substrate was evaluated by a scratch tester. The results showed that the coating was composed of nanocrystalline grains with a size of 80–90 nm compared with 0.5 μm for the pure Ir coating. The fine grains of the coatings might be attributed to the additional Zr element. New phases IrZr and ZrC were formed due to the high content of Zr and high deposition temperature. The hardness and elastic modulus of the coatings were about 7.5 GPa and 388 GPa, respectively. The adhesive force between the coating and the substrate was about 10 N.  相似文献   

20.
Spacecraft shields play an important role in shielding against the impact of space debris. Increasing the dispersion degree of the debris produced by the impact of the space debris on the bumper of configuration is able to lower the concentration of debris impacting on the rear plate and thus to reduce the risk of debris perforating the rear plate. In order to improve the dispersion degree, the N-shape configuration is proposed and studied by hypervelocity impact test with the velocity of 4.80 km/s and numerical simulation with the velocities ranging from 3.0 km/s to 7.0 km/s. As a comparison, the distribution of debris impacting on the rear plate is also investigated for the parallel triple-wall configuration with the same areal density. It is found that this degree is increased in the N-shape configuration due to the oblique plate, and therefore the risk of debris perforating the rear plate is reduced compared to the case of parallel triple-wall configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号