首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用高纯度W箔中间层复合AgCuTi活性钎料对镍基高温合金(GH4169)与Si3N4陶瓷进行连接,系统研究接头的微观界面结构以及钎焊温度对GH4169/Si3N4钎焊接头组织和力学性能的影响。结果表明:采用AgCuTi+W复合钎料可实现GH4169/Si3N4钎焊接头的有效连接,其接头组织成分为GH4169/TiNi3+TiCu+TiCu2+Ag(s, s)+Cu(s, s)+W+TiN+Ti5Si3/Si3N4;钎焊温度对接头组织和力学性能有显著影响。当钎焊温度较低时,液态钎料中的Ti元素扩散到陶瓷与钎料界面的较少,没有形成明显的反应层;当钎焊温度增加到880℃时,Ti元素富集在陶瓷侧反应生成厚度为2μm的TiN和Ti5Si3反应层,此时接头的剪切强度最高,达到190.9 MPa...  相似文献   

2.
采用Ag-5.0Cu-1.0Al-1.25Ti银基钎料通过真空钎焊的方法实现了Al2O3陶瓷与镍基高温合金GH3536的连接。为明确钎焊接头的界面形成机理,通过扫描电子显微镜和X射线衍射分析的测试方法研究了接头的界面组织结构与物相组成。同时探究了钎焊温度与保温时间对接头微观组织与力学性能的影响规律,从而实现工艺参数的优化。研究表明:在钎焊温度为970℃,保温时间为10 min的条件下,Al2O3/GH3536钎焊接头的典型界面组织为Al2O3/Ti3(Cu, Al)3O/Ag(s, s)+AlCu2Ti/TiNi3+TiFe2/GH3536,其接头的抗剪强度最高可达到194±10 MPa。随着钎焊温度的升高和保温时间的延长,Ti3(Cu, Al)3O反应层的厚度增加,钎缝中的富Cu相减少,AlCu  相似文献   

3.
本文利用AgCuTi-W复合钎料作中间层,在适当的工艺参数下真空钎焊Cf/SiC复合材料与Ti合金,利用SEM,EDS,XRD分析接头微观组织结构,利用剪切试验检测接头力学性能。研究结果表明:钎焊时,复合钎料中的Ti借助Cu-Ti液相与Cf/SiC复合材料反应,在Cf/SiC复合材料与连接层界面形成Ti3SiC2,Ti3Si和少量TiC化合物的混合反应层。复合钎料中的Cu与Ti合金中的Ti发生互扩散,在连接层与Ti合金界面形成不同成分的Cu—Ti化合物过渡层。钎焊后,形成W颗粒强化的致密复合连接层,W颗粒主要分布在Cu-Ti相中。W的加入缓解了接头的残余热应力,Cf/SiC/AgCuTi—W/TC4接头剪切强度明显高于CF/SiC/AgCuTi/TC4接头。  相似文献   

4.
用合金化的Ag-Cu-Ti粉及SiC粉组成的混合粉末钎料,真空无压钎焊SiC陶瓷和Ti合金.研究结果表明,在Ag-Cu-Ti粉末钎料中加入15vol%~30vol%SiC粉末能明显降低接头热应力,获得完整的SiC颗粒增强的复合接头.加入的SiC颗粒、SiC陶瓷母材均与连接层中的Ti起反应,形成表面反应层Ti3SiC2及分布于Ag-Cu-Ti合金中的Ti-Si化合物,随SiC颗粒增加,反应层变薄.连接层中的Cu元素与连接的Ti合金相互扩散,形成Cu-Ti相界面扩散带.  相似文献   

5.
王秒  王微  杨云龙  檀财旺  王刚 《航空学报》2022,43(4):482-491
采用CoFeNiCrCu高熵合金为钎料对SiC陶瓷进行了钎焊连接,研究了钎焊时间对接头微观组织和力学性能的影响。结果表明,SiC/CoFeNiCrCu/SiC接头的典型界面组织为:SiC/Cr23C6+Cu(s, s)+Si(s, s)/HEAF+Cu(s, s)/Cr23C6+Cu(s, s)+Si(s, s)/SiC。随着钎焊时间的增加,组织中相的种类没有发生变化,接头在高熵效应的作用下仍主要由固溶体组成,接头中反应层厚度逐渐增大。当钎焊时间为90 min时,反应层厚度达到最大为25μm。但过厚的反应层使得接头在冷却过程中产生的应力在反应层中集中并导致反应层中产生裂纹等缺陷。当钎焊温度为1 180℃,保温60 min时,接头剪切强度最高达到61 MPa。此时,裂纹从远离接头的SiC陶瓷开始萌生并向接头方向扩展,最终断裂在陶瓷与反应层的界面处。  相似文献   

6.
以高温钛合金和自共晶镍硅合金为母材,使用额外添加硼元素的Ti-Zr-Ni-Cu非晶钎料进行钎焊连接,针对硼元素含量和钎焊对接头界面结构和力学性能的影响进行探究。通过对Ni-25at%Si/Ti-Zr-Ni-Cu+B非晶钎料/Ti600接头的界面组织结构进行优化实现钎焊结构性能的提升,获得质量良好的钎焊接头。研究结果表明,通过引入硼元素可调控钎焊过程,继而获得TiB晶须,这种晶须能对Ti2Ni层产生复合强化的作用,进而使接头高温钛合金侧界面的残余应力明显下降,减缓接头开裂的速度,同时结合拔出强化方式对裂纹的扩展起到阻碍作用,从而提高接头的强度。1 213 K/10 min工艺条件下的镍硅合金/高温钛合金钎焊接头的平均强度高于不含硼元素增强的接头,达到84 MPa,同时确保在接头内部不会出现裂纹和孔洞,进而达到提升镍硅合金/高温钛合金钎焊接头质量的效果。  相似文献   

7.
采用Cu_(41.83)Ti_(30.21)Zr_(19.76)Ni_(8.19)(at.%)非晶钎料对Ti48Al2Cr2Nb合金与Zr B_2-Si C陶瓷进行真空钎焊连接,通过扫描电镜、能谱分析、X射线衍射以及万能试验机对接头的微观组织和力学性能进行研究。结果表明:Ti Al合金与Zr B_2-Si C陶瓷钎焊接头的界面结构为Ti Al/Ti_2Al/Al Cu Ti/(Ti,Zr)_2(Cu,Ni)+Ti B+Ti Cu/Ti_5Si_3/ZS。当钎焊温度为910℃,随着保温时间的延长,靠近Zr B_2-Si C一侧反应层宽度逐渐增大,接头中弥散分部的Ti B和Ti Cu聚集长大。接头剪切强度随着保温时间的延长先上升后降低,当钎焊温度为910℃,保温20 min时,接头剪切强度最大,为187 MPa,通过对各工艺的接头断口分析,发现接头均断裂在陶瓷侧,断裂方式为脆性断裂。  相似文献   

8.
在钎焊温度为1040℃,保温时间为15 min的条件下,采用BNi-2钎料钎焊连接C/C复合材料面板和GH3536高温合金异种材料蜂窝结构,研究了不同钎料层厚度对板–芯界面微观组织变化和板–芯拉脱性能影响。结果表明,焊后板–芯接头由钎料与C/C母材反应区、钎料与蜂窝反应区和钎料凝固区3个区域组成,钎料与C/C母材反应生成了Cr3C2反应层,钎料与蜂窝反应区内生成了Si的金属间化合物和Cr3C2颗粒。随着钎料厚度的增加,接头拉脱性能先升高后降低,当钎料厚度为0.12 mm时,板–芯接头拉脱强度达到最高9.69 MPa,断裂位置主要发生在C/C基体内。  相似文献   

9.
研究了Ag-Cu-Ti/加Ti/N i/Ti复合层钎焊S i3N4陶瓷的接头组织与性能。结果表明,钎缝中形成了以金属间化合物为高熔点相和Ag-Cu作为基体的组织。对界面反应层的观察表明,反应层分为两层结构。保温时间、连接温度、Ti箔和N i箔厚度及Ag-Cu-Ti钎料厚度均能影响接头组织和强度。在本实验范围内,其它参数一定的条件下,分别在30m in,970℃,Ti箔30μm和N i箔60μm及Ag-Cu-Ti片150μm时取得了最大强度值。  相似文献   

10.
采用AgCu钎料实现了Ti60合金和ZrO_2陶瓷的钎焊连接。使用扫描电子显微镜(Scanning Electron Microscope,SEM)、能谱仪(Energy Dispersive Spectrometer,EDS)和X射线衍射仪(X-Ray Diffractometer,XRD)等分析测试手段,对不同钎焊温度下获得的接头界面组织结构进行了分析。研究表明,Ti60/AgCu/ZrO_2接头典型界面组织为:Ti60合金/α-Ti+Ti_2Cu扩散层/TiCu+TiCu_2/Ag(s,s)+Cu(s,s)/Ti_3Cu_3O反应层/TiO反应层/ZrO_2陶瓷。随着钎焊温度的升高,α-Ti+Ti2Cu扩散层、TiCu+TiCu_2层、Ti3_Cu_3O层及TiO层厚度均逐渐增加,颗粒状Ti-Cu化合物不断长大,Ag(s,s)和Cu(s,s)含量逐渐减少。剪切试验表明,在钎焊温度为900℃、保温时间为10min条件下获得的接头室温抗剪强度最高为124.9 MPa,500℃和600℃抗剪强度分别为83.0 MPa和30.2 MPa。断口分析表明:接头沿ZrO_2陶瓷/钎料界面和靠近该界面的钎缝发生断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号