首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
为了克服发射过程和在轨极端温度环境对空间机械臂末端位姿精度的影响,提出了一种基于指数积(POE)公式的空间机械臂运动学在轨自标定方法。该方法使用空间机械臂末端双目空间相机和棋盘式标定板测量空间机械臂末端位姿实际值。根据关节旋量理论值和实际值之间的伴随变换关系建立了空间机械臂实际运动学模型,对运动学模型取微分建立了线性化的运动学误差模型,给出了基于最小二乘法的运动学标定模型。进行了7自由度空间机械臂运动学自标定仿真,仿真结果表明运动学标定过程能快速收敛到稳定值,标定后空间机械臂末端位姿精度有明显提高。   相似文献   

2.
针对挠性航天器利用柔性空间机械臂在轨操作目标进行分析.首先利用Kane方程和假设模态法对挠性航天器上安装有柔性空间机械臂的系统进行动力学建模.其次,采用修正的罗德里格斯参数描述机械臂末端相对服务航天器的姿态,利用五次多项式对机械臂末端的相对位置与姿态进行规划,并将目标航天器的相对运动进行补偿,基于雅克比矩阵的广义逆求解机械臂关节运动规律.然后,将反馈控制与扩张状态观测器结合,分别设计了航天器姿态稳定控制器和机械臂轨迹跟踪控制器.最后,对柔性空间机械臂捕获目标航天器以及安装模块的过程进行闭环数值仿真,结果表明,所设计的控制器能够使机械臂跟踪期望轨迹,同时使得航天器姿态趋于稳定,机械臂可以较高精度完成在轨操作.  相似文献   

3.
针对柔性空间机械臂的刚体运动控制和柔性体振动抑制问题,给出了一种反馈和前馈复合控制方法.对于一个柔性双连杆机械臂,首先设计反馈线性化控制器,消除非线性影响,实现大范围的刚体运动控制.其次基于闭环回路响应的振动特性,设计输入成型前馈控制器,预成型控制命令,抑制对结构振动影响显著的某些模态响应.最后仿真结果证实了给出的反馈线性化和输入成型复合控制方法,可以实现精确的位置控制,同时机械臂的残余振动得到了有效的抑制.  相似文献   

4.
梁捷  陈力 《空间科学学报》2009,29(3):338-345
讨论了载体姿态受控、位置不受控制情况下, 漂浮基空间机械臂载体姿态及机械臂 关节协调运动的控制问题. 利用拉格朗日方法并结合系统动量守恒关系, 建立了漂浮基空间机械臂完全能控形式的系统动力学方程. 以此为基础, 针对空间机械臂末 端爪手所持载荷参数未知的情况, 设计了一种基于标称计算力矩控制器附加模糊自适应补偿控制器的复合控制方案, 即通过模糊自适应补偿控制器来弥补系统未知参数对标称计算力矩控制器的影响, 以确保存在未知系统参数情况下整个闭环控制系 统的渐近稳定性. 文中提到的控制方案能够有效地控制漂浮基空间机械臂的载体姿态及机械臂关节, 可以协调地完成期望的轨迹运动, 并具有不需要反馈和测量空间机械臂载体 的位置、移动速度、移动加速度, 同时也不要求系统动力学方程关于系统惯性参数呈线性函数关系的显著优点. 通过系统数值仿真证实了方法的有效性.   相似文献   

5.
空间机器人退步控制器设计   总被引:1,自引:0,他引:1  
 针对带任意节机械臂的空间机器人,采用退步法设计了基座姿态与机械臂受控的复合控制器。所设计的控制器以机械臂末端在工作空间中的位置和姿态、机械臂在关节空间中的关节角、关节角速度、基座姿态角和姿态角速度为反馈变量,可直接实现机械臂在工作空间的控制任务,避免了从工作空间到关节空间的运动学规划及Jacobian矩阵求导,同时,通过对基座的姿态控制能扩展机器人的功能,改善机械臂的动力学奇异特性。以某个带有6节机械臂的空间机器人为背景进行了数学仿真,验证了所设计的控制器的有效性。  相似文献   

6.
摘要: 根据某型号搭载的七自由度空间机械臂的测试任务,设计一套空间机械臂地面仿真与测试系统.该系统可以完成两方面的功能:一是利用空间机械臂模拟器进行半物理仿真,对空间机械臂控制线路盒的电接口和控制软件功能进行测试;二是采用吊丝卸载装置对空间机械臂真实产品进行全物理试验,对在轨任务进行地面演示验证.利用所设计的测试系统已经完成了某型号空间机械臂的地面测试与演示验证任务,目前该型号已经发射成功,空间机械臂已经成功完成在轨试验.所设计的空间机械臂地面仿真与测试系统具有较好的通用性和扩展性,可以应用于其他空间机械臂产品的地面测试.  相似文献   

7.
对具有初始动量的自由漂浮空间机械臂系统进行了研究,考虑其执行在轨任务时便已经具有的动量,根据系统的构型参数建立运动学模型,再采用拉格朗日第二类方程建立动力学模型。利用空间机械臂系统具有冗余自由度这一特性,推导运动学和动力学方程,得到了零反作用运动方程,消除了基座和机械臂之间的角速度耦合作用。末端运动轨迹用多项式插值函数来逼近,根据给定的机械臂末端初始和终止状态来规划其运动轨迹,并将机械臂末端的工作空间转换到关节空间中。根据已知的动力学模型,设计合适的比例-微分(PD)控制率。仿真结果表明,通过选择合适的增益反馈矩阵,机械臂末端能平稳地跟踪目标轨迹,同时,机械臂的运动不会对基座的姿态产生扰动,保证了基座姿态的稳定性及航天器的正常运行。  相似文献   

8.
针对柔性关节自由漂浮空间机械臂,在存在动力学参数不确定性的情况下,通过增加相对阻尼项,提出基于无源性的柔性关节自由漂浮空间机械臂的关节空间自适应控制器,然后得到其递推实现.递推自适应算法由两部分组成:一部分实现所需的机械臂控制力矩的递推,另一部分实现航天器参考速度和参考加速度的递推更新.针对六自由度柔性关节自由漂浮空间机械臂进行了仿真,验证了所设计的递推自适应控制算法的性能.  相似文献   

9.
自由漂浮机械臂抓取翻滚目标的自适应控制策略   总被引:1,自引:0,他引:1  
提出了一种自由漂浮机械臂抓取翻滚目标的自适应控制策略.抓取翻滚目标要求自由漂浮机械臂具有很强的轨迹跟踪能力,但是自由漂浮机械臂本身以及目标所存在的运动学和动力学参数不确定性使基于模型的控制器性能急剧下降,甚至变得不稳定.通过对参数的自适应逐步改善基于模型的控制器的性能,并且提出了一种新的自由漂浮机械臂关节空间自适应控制器.最后通过数值仿真对所提出的自适应控制策略进行了验证.  相似文献   

10.
绳驱连续型机械臂具有良好的柔性和灵活性,能够在狭小的空间内运动,但相对于离散型机械臂,利用D-H参数构建运动学模型的方法不再适用,且连续型机械臂具有无穷自由度,逆运动学求解困难。针对一种两节的绳驱连续型机械臂的运动学问题,基于分段常曲率假设,建立了运动学模型,并分析了两节之间的运动学耦合关系。在此基础上,利用改进粒子群优化算法求解连续型机械臂逆运动学,通过仿真验证了该逆解算法的可行性和有效性,搭建了绳驱连续型机械臂的物理样机系统,并验证了基于分段常曲率假设的正运动学模型的正确性。  相似文献   

11.
讨论了控制力矩受限且系统参数不确定情况下, 载体位置不受控、姿态受控 的漂浮基空间机械臂系统的智能控制问题. 运用系统动量守恒关系和拉格朗 日方程建立系统的动力学方程. 针对控制力矩受限和机械臂末端爪手所抓持 的载荷参数不确定的情况, 设计了一种基于饱和速度滤波器的自适应控制方 法. 该控制方法运用自适应调节规律有效地克服了系统不确定参数对控制精 度的影响; 运用双曲函数限制控制力矩的幅值大小, 使其更符合空间实际的 要求. 此外, 速度滤波器的运用使得在控制过程中不需要测量和反馈系统的 速度信号, 从而使得控制更加简单易行. 仿真结果证明了所提出控制方法的 有效性.   相似文献   

12.
针对空间机器人系统捕获非合作目标后由于质量特性参数和动量突变影响导致的组合体系统失稳问题,提出了一种基于系统动力学模型的抗干扰自适应控制方法。利用拉格朗日方法对系统进行动力学建模,通过冲击动力学建模分析得到了捕获目标后组合体系统的初始状态;基于系统动力学模型设计了线性反馈控制方法,考虑组合体质量特性参数不确定性以及外在干扰不确定性,对组合体系统动力学模型进行了不确定参数线性化,设计了参数自适应线性反馈控制方法;最后以平面三关节机械臂系统捕获旋转目标为例进行了仿真计算。组合体系统的运动状态量趋于期望值,速度级状态变量误差量级控制在10-4以下,位置级状态变量误差量级控制在10-3以下,说明该控制方法可以很好地保持捕获目标后组合体系统的稳定。  相似文献   

13.
针对航天制造中轻金属材料搅拌摩擦焊的焊接需求,提出一种以2UPR-RRU构型的1T2R三自由度并联机构为主要执行机构的焊接装备。基于螺旋理论分析了该构型在一般位型和特殊位型下的约束螺旋系和自由度性质,指出该构型是具有两转一移的全周自由度机构。建立2UPR-RRU并联机构运动学模型,利用闭环矢量法建立动平台位姿与各驱动支链的关系,推导其运动学的正反解;在正解过程中构造优化目标函数,采用粒子群优化(PSO)算法分析了位姿输出与驱动关节输入的关系,得到了驱动输入的精确解。基于输入/输出速度雅可比矩阵分析了机构的奇异性问题,指出该构型避免存在驱动奇异的条件,研究表明该机构具有较好的运动学特性和驱动特性,具备良好的应用潜力。   相似文献   

14.
三自由度平面欠驱动机械臂的轨迹跟踪控制   总被引:1,自引:0,他引:1  
研究了三连杆平面欠驱动机械臂的轨迹跟踪问题.机械臂的第3个关节为被动关节,施加在自由运动连杆上的动力学约束是二阶非完整的.通过全局输入和坐标变换,系统的动力学方程被变换成高阶链式形式.基于后推法(backstepping)的思想推导出保证系统全局渐近收敛于参考轨迹的时变反馈控制规律.后推法将系统分解为低阶子系统来处理,利用中间虚拟控制变量和部分Lyapunov函数简化了控制器的设计.数值仿真结果显示系统能稳定地跟踪参考轨迹,也证明了控制器设计是有效的.   相似文献   

15.
基于舵机指令前馈的电液负载模拟器同步控制   总被引:3,自引:0,他引:3  
电液负载模拟器是典型的带有强运动耦合的电液力(矩)伺服系统,克服由运动干扰造成的多余力是其控制的关键问题.针对于目前常用的同步补偿算法在消除多余力实际应用中存在的问题,提出了基于舵机指令前馈的同步补偿策略.该策略采用舵机速度指令信号和负载模拟器力矩反馈信号来实现精确的同步补偿,不需要舵机的速度信号、加速度信号以及阀控信号.同时该策略考虑了加载力矩对舵机输出速度的影响,相对于传统速度同步算法在大负载力矩跟踪下可得到更好的多余力消除效果,从而能实现更准确的速度同步补偿.针对于典型加载工况进行的仿真和实验结果表明,该策略能有效解决舵机运动扰动带来的多余力问题,进而提高动态加载精度.   相似文献   

16.
以高超声速飞行器通用模型的俯仰通道为控制对象,针对其6自由度非线性模型设计了一体化飞控系统.飞控系统由1个模糊控制器和2个PD控制器组成.基于遗传算法实现了模糊控制规则和PD反馈参数的自动优化,无需先验知识和训练数据.仿真表明,该方法可以同时满足飞行控制系统鲁棒性和优化过程收敛性的要求,特别是鲁棒性优于同样采用模糊控制的经典双回路飞控系统.  相似文献   

17.
The existence of the path dependent dynamic singularities limits the volume of available workspace of free-floating space robot and induces enormous joint velocities when such singularities are met. In order to overcome this demerit, this paper presents an optimal joint trajectory planning method using forward kinematics equations of free-floating space robot, while joint motion laws are delineated with application of the concept of reaction null-space. Bézier curve, in conjunction with the null-space column vectors, are applied to describe the joint trajectories. Considering the forward kinematics equations of the free-floating space robot, the trajectory planning issue is consequently transferred to an optimization issue while the control points to construct the Bézier curve are the design variables. A constrained differential evolution (DE) scheme with premature handling strategy is implemented to find the optimal solution of the design variables while specific objectives and imposed constraints are satisfied. Differ from traditional methods, we synthesize null-space and specialized curve to provide a novel viewpoint for trajectory planning of free-floating space robot. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a free-floating spacecraft and demonstrate the feasibility and effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号