首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article provides an overview of NASA's plans to encourage commercial use of the International Space Station (ISS). It examines the reasons driving such commercialization and highlights those private companies currently most interested in undertaking profit-making operations on the station, as well as discussing those activities most likely to be seen as commercial possibilities. The steps NASA is taking to stimulate private interest are enumerated. Various unresolved issues are raised, such as the legal issues associated with commercial research, charging policy for in-orbit operations and ‘metering’ of in-orbit resources. It is noted that the international dimension of the ISS has thus far received little consideration in the USA.  相似文献   

2.
NASA, the initiator of the International Space Station (ISS), is currently reinforcing partnerships with the commercial sector as well as other ISS partner states in preparation for the ISS's operation and utilisation. This gives rise to an urgent need to analyse the ISS's legal framework in order to clearly state its legal merits and shortcomings. This essay presents the advantages and disadvantages of the ISS's legal framework by employing the “legalisation”-based approach. These advantages and disadvantages give us clues for selecting the optimal legal arrangement for the future development of the ISS programme. It will therefore be possible to minimise the risks associated with and to generate profits from ISS activities. This will ensure the effective and coherent implementation of the ISS programme.  相似文献   

3.
Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 6 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the long-term effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.  相似文献   

4.
美国载人航天商业运输的发展   总被引:2,自引:1,他引:1  
张蕊 《航天器工程》2011,20(6):86-93
研究了美国载人航天商业运输的发展现状和趋势。美国在取消星座计划之后,实施商业乘员和货物项目,将依靠商业运输器实现"国际空间站"的乘员和货物运输,以缩短"后航天飞机"时代(航天飞机退役后)运输的断档期。美国商业乘员和货物项目包括商业轨道运输服务(COTS)计划、商业再补给服务(CRS)计划和商业乘员开发(CCDev)计划...  相似文献   

5.
ATV交会飞行控制策略研究   总被引:1,自引:1,他引:0  
"自动转移飞行器"(ATV)是欧洲航天局(ESA)服务"国际空间站"(ISS)的项目.ATV货运飞行器自动执行调相,交会与对接、分离、降轨,以及受控毁坏性再入.ATV对ISS的交会对接可脱离地面控制自主完成,ATV交会使命将朝向栽人航天飞行发展,高度自主性与严格安全性是ATV使命设计的主要特点.在自主交会飞行期间,飞行...  相似文献   

6.
Kicza M  Erickson K  Trinh E 《Acta Astronautica》2003,53(4-10):659-663
Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output.  相似文献   

7.
Joseph N. Pelton   《Space Policy》2010,26(4):246-248
The Space Transportation System (STS), for better or worse, has dominated the US space program for some 30 years and is now an American icon. The Space Shuttle orbiters have flown over 120 missions and certainly accomplished some amazing feats, including the deployment of the International Space Station (ISS), the launch and double repair of the Hubble Telescope, a number of classified missions for the US defense establishment and the cementing of international cooperation in space. As the remaining Space Shuttle orbiters head toward various museums, it is timely to look at the STS program in terms of key US space policy decisions that have paralleled the Space Shuttle’s often troubled history. This article seeks, from both a historical and a policy perspective, to assess what might have been. While noting the major accomplishments of the STS, it also identifies what can best be characterized as major lost opportunities and flawed policy decisions that have had multi-billion dollar consequences. In this regard, the US Congress, the White House, and NASA leadership have all played a role. If there have been failings, they have not been by NASA alone, but the entire US space policy leadership.  相似文献   

8.
In today's fiscally constrained environment, it can be expected that systems designed for one space program will increasingly be used to support other programs. The example of the U.S. extravehicular mobility unit (EMU), designed for use with the Space Shuttle, and now part of the baseline for the International Space Station (ISS) program, illustrates the adaption process. Certifying the Shuttle's EMU for use aboard ISS requires addressing three fundamental issues: Identifying new ISS requirements to be imposed on the EMU. Extending Shuttle's EMU on-orbit service interval to meet ISS's longer missions. Certifying Shuttle's EMU to meet new environments unique to ISS. Upon completion of the certification process, Shuttle's EMU will meet all requirements for supporting both the Shuttle and ISS program. This paper discusses the processes for addressing these issues and progress to date in achieving resolution.  相似文献   

9.
Redundant space manipulators, including Space Station Remote Manipulator System (SSRMS), Special Purpose Dexterous Manipulator (SPDM) and European Robotic Arm (ERA), have been playing important roles in the construction and maintenance of International Space Station (ISS). They all have 7 revolute joints arranged in similar configurations, and are referred to as SSRMS-type manipulators.  相似文献   

10.
The European Space Agency (ESA) contribution to the International Space Station (ISS) goes much beyond the delivery of hardware like the Columbus Laboratory, its payloads and the Automated Transfer Vehicles. ESA Astronauts will be members of the ISS crew. ESA, according to its commitments as ISS international partner, will be responsible to provide training on its elements and payloads to all ISS crewmembers and medical support for ESA astronauts. The European Astronaut Centre (EAC) in Cologne has developed over more than a decade into the centre of expertise for manned space activities within ESA by contributing to a number of important co-operative spaceflight missions. This role will be significantly extended for ISS manned operations. Apart from its support to ESA astronauts and their onboard operations, EAC will have a key role in training all ISS astronauts on ESA elements and payloads. The medical support of ISS crew, in particular of ESA astronauts has already started. This paper provides an overview on status and further plans in building up this homebase function for ESA astronauts and on the preparation towards Training Readiness for ISS crew training at EAC, Cologne. Copyright 2001 by the European Space Agency. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Released to IAF/IAA/AIAA to publish in all forms.  相似文献   

11.
The problems of decreasing the duration of the autonomous flight of a spacecraft (SC) before the docking with an orbital station (OS) are considered in this paper. Modern SCs should be docked with the International Space Station (ISS) with an arbitrary initial phase angle; for this reason, the rendezvous of the Russian Soyuz-TMA spacecraft with the ISS is performed for 2 days. The paper presents to consideration some new flight profiles with essentially smaller duration. The results of modeling the developed rendezvous profiles are presented and solutions to emergency situations are considered.  相似文献   

12.
Canada and the International Space Station program: overview and status   总被引:4,自引:0,他引:4  
Gibbs G  Sachdev S 《Acta Astronautica》2002,51(1-9):591-600
The twelve months since IAF 2000 have been perhaps the most exciting, challenging and rewarding months for Canada since the beginning of our participation in the International Space Station program in 1984. The highlight was the successful launch, on-orbit check out, and the first operational use of Canadarm2, the Space Station Remote Manipulator System, between April and July 2001. The anomalies encountered and the solutions found to achieve this success are described in the paper. The paper describes, also, the substantial progress that has been made, during the twelve months since IAF 2000, by Canada as it continues to complete work on all flight-elements of its contribution to the International Space Station and as we transition into real-time Space Station operations support and Canadian utilization. Canada's contribution to the International Space Station is the Mobile Servicing System (MSS), the external robotic system that is key to the successful assembly of the Space Station, the maintenance of its external systems, astronaut EVA support, and the servicing of external science payloads. The MSS ground segment that supports MSS operations, training, sustaining engineering, and logistics activities is reaching maturity. The MSS Engineering Support Center and the MSS Sustaining Engineering Facility are providing real-time support for on-orbit operations, and a Canadian Payloads Telescience Operations Center is now in place. Mission Controllers, astronauts and cosmonauts from all Space Station Partners continue to receive training at the Canadian Space Agency. The Remote Multi Purpose Room, one element of the MSS Operations Complex, will be ready to assume backroom support in 2002. Canada has completed work on identifying its Space Station utilization activities for the period 2000 through 2004. Also during the past twelve months the CSA drafted and is proceeding with the approval of a Canadian Space Station Commercialization Policy. Canadian astronauts have now participated in three ISS assembly missions--Julie Payette on STS-96, Marc Garneau on STS-97, and Chris Hadfield on STS-100 in April 2001 during which he performed Canada's first EVA and the successful installation of the Space Station Remote Manipulator System.  相似文献   

13.
The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.  相似文献   

14.
Cosmic Research - The technology of guiding scientific equipment to objects under study using a steerable platform onboard the Russian segment of the International Space Station (ISS) is presented....  相似文献   

15.
The invitation to Brazil to join the International Space Station (ISS) program illustrates the way that foreign-policy makers in the USA favor short-term decisions over long-term commitments, while, in accepting the invitation, Brazil was also promoting other objectives. In taking the initiative to invite Brazil, President Clinton provided a unique opportunity to a middle-to-low-ranking spacefaring developing country to join the program as part of NASA's quota for the ISS. However, this action was the result of exchanges and bargains between the two countries, involving domestic and international interests on both sides—not all directly related to ISS activities—targeted at security and industrialization issues. These included the international non-proliferation regime, the commercialization of space systems and facilities (particularly Brazil's Alcantara Launch Center) and intellectual property.  相似文献   

16.
“国际空间站”系统特点分析   总被引:1,自引:1,他引:0  
范嵬娜 《航天器工程》2012,21(2):94-100
介绍了"国际空间站"的总体设计;分析了"国际空间站"系统设计的特点和不足,其中包括重视成熟技术和冗余设计,众多系统故障暴露出技术薄弱性,机器人系统自动化水平有待提高,以及许多先进技术规划未能实施;提出了发展中国空间站的启示与建议,如借鉴国外协力合作系统先进设计经验和科学评估安全性方法,权衡技术继承性与先进性,注重空间站系统设备的设计、维修、机器人开发和延寿问题。  相似文献   

17.
《Acta Astronautica》2007,60(4-7):594-598
The International Space Station (ISS) is a multifaceted international project. Several space agencies from different countries work together in the Outer Space. This paper will illustrate the exciting questions arising from such a venture and therefore the challenge to incorporate a variety of issues into a legal order. The Paper is addressed to lawyers who need not necessarily be experts in space law, and also to space experts who have no legal background. It demonstrates the three layers of the ISS regime—from the “Intergovernmental Agreement” (IGA) as a “frame” with pillars and boundaries, over the “Memoranda of Understanding” (MOU) which rules in a more specific way, to the so-called “Implementing Arrangements” regulating the overall and single aspects of ISS in detail.The paper underlines questions of applicable jurisdiction, utilization rights and the rights on intellectual property onboard of the ISS. Furthermore the problem of liability in space flight is highlighted, also with a view to the different aspects of the liability issue, for example (internal) liability caused by programme delays (e.g. US Space Shuttle delays).In conclusion, the paper illustrates the situation of astronauts by the “Code of Conduct for the International Space Station Crew” and provides an example for the actual ISS Programme—an international cooperation in a highly demanding environment which will be a basis for future space ventures in many ways.  相似文献   

18.
Japan Aerospace Exploration Agency (JAXA) launched its own first manned experiment facility in space called the KIBO (Japanese Experiment Module, JEM) in 2008 and 2009 and started operations as part of International Space Station (ISS). To accomplish this Operation, JAXA made its own ground facility in Tsukuba, Japan, called Space Station Integration and Promotion Center (SSIPC). Ground personnel at SSIPC called the JEM Flight Control Team (JFCT) operate the KIBO and have learnt many lessons during its operation. In this presentation, some topics are chosen and explained such as (1) crew/ground personnel interaction and (2) planning lessons learned for manned space activities.  相似文献   

19.
Recent advances in personal computer technology have led to the development of relatively low-cost software to generate high-resolution three-dimensional images. The capability both to rotate and zoom in on these images superposed on appropriate background images enables high-quality movies to be created. These developments have been used to produce realistic simulations of the International Space Station on CD-ROM. This product is described and its potentialities demonstrated. With successive launches, the ISS is gradually built up, and visualised over a rotating Earth against the star background. It is anticipated that this product's capability will be useful when training astronauts to carry out EVAs around the ISS. Simulations inside the ISS are also very realistic. These should prove invaluable when familiarising the ISS crew with their future workplace and home. Operating procedures can be taught and perfected. "What if" scenario models can be explored and this facility should be useful when training the crew to deal with emergency situations which might arise. This CD-ROM product will also be used to make the general public more aware of, and hence enthusiastic about, the International Space Station programme.  相似文献   

20.
In 2009 President Obama proposed a budget for the National Aeronautics and Space Administration (NASA) that canceled the Constellation program and included the development of commercial crew transportation systems into low Earth orbit. This significant move to shift human spaceflight into the private sector sparked political debate, but much of the discourse has focused on impacts to “safety.” Although no one disputes the importance of keeping astronauts safe, strategies for defining safety reveal contrasting visions for the space program and opposing values regarding the privatization of U.S. space exploration. In other words, the debate over commercial control has largely become encoded in arguments over safety. Specifically, proponents of using commercial options for transporting astronauts to the International Space Station (ISS) argue that commercial vehicles would be safe for astronauts, while proponents of NASA control argue that commercial vehicles would be unsafe, or at least not as safe as NASA vehicles. The cost of the spaceflight program, the technical requirements for designing a vehicle, the track record of the launch vehicle, and the experience of the launch provider are all incorporated into what defines safety in human spaceflight. This paper analyzes these contested criteria through conceptual lenses provided by fields of science and technology policy (STP) and science, technology, and society (STS). We ultimately contend that these differences in definition result not merely from ambiguous understandings of safety, but from intentional and strategic choices guided by normative positions on the commercialization of human spaceflight. The debate over safety is better considered a proxy debate for the partisan preferences embedded within the dispute over public or private spaceflight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号