首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
讨论了一种基于神经网络动态逆的直接自适应控制方法,并应用于超机动飞机的飞行控制中。基本控制律采用非线性动态逆方法进行设计,对由于模型不准确导致的逆误差采用单隐层神经网络进行在线补偿。仿真结果表明,神经网络通过补偿由于模型不准确引起的逆误差,弥补了非线性动态逆要求精确数学模型的缺点,提高了整个控制系统的鲁棒性,而且可以大大简化动态逆控制律的设计。  相似文献   

2.
针对用动态逆方法设计飞行控制系统在极慢模态设计中所遇到的完全非线性问题,以及飞行器在执行低空突防任务时所面临的程度无法精确控制的条件,提出了一种以前向神经网络为核心的解决方案。文中给出了神经网络的拓扑结构、样本采集方法以及动态逆控制器的构造方法,仿结果表明,该方案具有良好的指令跟踪能力。  相似文献   

3.
研究了神经网络自适应控制在直升机飞行控制系统中的应用。首先将直升机姿态角系统划分为快慢回路 ,并分别采用动态逆方法进行设计 ;针对动态逆方法的优点和不足 ,提出了小波神经网络自适应逆控制方案 ,把BP小波神经网络和基于李亚普诺夫稳定的小波神经网络分别应用于直升机飞行控制系统中 ;最后对典型机动飞行进行了仿真 ,说明小波神经网络方法应用的正确性和有效性。仿真结果证明 ,本文采用的小波神经网络自适应控制方法效果好 ,具有工程应用价值  相似文献   

4.
采用TLC方法的超机动飞行控制系统设计   总被引:2,自引:0,他引:2  
基于轨迹线性化控制(Trajectory linearization control,TLC)方法,研究了超机动飞机飞行控制系统的设计问题。首先简要介绍了TLC方法的设计思想;然后根据奇异摄动理论,将超机动飞行控制系统分成快慢两个回路,并为其分别设计了轨迹线性化控制器;最后分别用所设计的控制器和已有的动态逆控制器对某型歼击机进行了赫布斯特机动仿真。仿真结果和对比分析表明,所设计的TLC控制器是有效的,且比动态逆控制器具有更好的控制跟踪性能。  相似文献   

5.
基于神经网络动态逆的歼击机自适应跟踪控制   总被引:6,自引:0,他引:6  
基于神经网络动态逆方法,给出了一种非线性模型参考自适应跟踪控制方案。应用神经网络直接对非线性系统求逆方法解决了逆系统方法的两个“瓶颈”问题,并且克服了传统的控制设计中将过程模型线性化,从而将不可忽视的非线性关系用线性关系代替或者忽略的弊端。对由于建模误差、不确定因素等引起的非线性系统逆误差,通过自组织模糊小脑模型关节控制器(Self—organizing fuzzy cerebellar model articulation controller,SOFCMAC)神经网络在线进行修正。SOFCMAC神经网络扩大了寻优空间,使其能更好地重构系统逆误差,最终实现准确的鲁棒自适应跟踪控制。通过将这种方法用于某型歼击机姿态系统控制的仿真研究,表明了本文方法的有效性和可行性。  相似文献   

6.
A discussion is devoted to the design of an adaptive flight control system of the armed helicopter using wavelet neural network method. Firstly, the control loop of the attitude angle is designed with a dynamic inversion scheme in a quick loop and a slow loop. respectively. Then, in order to compensate the error caused by dynamic inversion, the adaptive flight control system of the armed helicopter using wavelet neural network method is put forward, so the BP wavelet neural network and the Lyapunov stable wavelet neural network are used to design the helicopter flight control system. Finally, the typical maneuver flight is simulated to demonstrate its validity and effectiveness. Result proves that the wavelet neural network has an engineering practical value and the effect of WNN is good.  相似文献   

7.
一种基于动态逆的控制方案在无人机中的应用研究   总被引:5,自引:0,他引:5  
动态逆技术通过成功的实际飞行测试而获得广泛认同,目前该研究热点在于对象模型的不确定性的抑制及鲁棒性的研究。文中提出一种基于在线神经网络的新型动态逆控制器,其主要思想是通过在线迭代的神经网络最大程度地挖无人机非线性不确定模型及其逆模型,同时通过一个梯度修正环节来补偿误差的影响。仿真验证包括三部分:对极快变量回路的仿真、航迹角跟随的仿真以及三维空间中对给定轨迹的跟踪。仿真结果表明,该方案能够解决精确的  相似文献   

8.
直升机神经网络反馈线化飞行控制   总被引:1,自引:0,他引:1  
以SH-2G为控制对象,采用基于神经网络的非线性系统反馈性化控制方法,进行直升机机动飞行仿真,仿真结果表明,所设计的神经网络具有逢适应能力,能够在线补偿反馈线性化所产生的逆变换误差,这种方法无须获得动态逆模型,而只需某一个状态下的动力学模型,就能在全包线提供有效的控制,既避免了传统方法的增益调参,又解决了难以获得动态逆模型及计算量大的问题,是一种很有发展潜力的智能控制方法。  相似文献   

9.
飞翼式微型飞行器由于尺寸小、速度低、气动布局特殊和飞行环境复杂多变,其飞行力学具有显著的非线性和非定常特性,传统的控制方法已不能满足要求.本文运用时标分离理论,设计了快变量和慢变量动态逆,同时引入在线神经网络补偿动态逆误差,并采用伪控制补偿器消除作动器和自适应单元之间的相互影响,在此基础上提出了飞翼式微型飞行器的自适应飞行控制系统,并与采用动态逆-PID控制方法设计的飞行控制系统进行比较.仿真结果表明:基于自适应逆的飞行控制系统,具有较强的鲁棒性和指令跟踪能力,比动态逆-PID飞行控制系统更适合于微型飞行器.  相似文献   

10.
基于Beddoes-Leishman(B-L)动态失速模型,对前缘涡的分离条件和位置进行了修正,并采用了量纲为一的时间参数对前缘涡的累积和涡的移动在时间尺度上做更合理的建模,建立了涡位置和涡增量的关系,另外,改进了气流的再附着条件.算例表明采用修正后的B-L动态失速模型,能够有效地改善低马赫数下垂直力系数和力矩系数突变的临界点和峰值,而且改进了一般修正模型对气流再附着段的判断,有助于提高直升机在大机动飞行时旋翼大交变载荷的计算准确性.  相似文献   

11.
基于动态结构自适应神经网络的非线性鲁棒跟踪控制   总被引:1,自引:0,他引:1  
针对非线性系统,提出一种将H∞鲁棒跟踪控制器与动态结构自适应神经网络相结合的组合控制方法.文中首先将系统线性化,设计H∞鲁棒跟踪控制器;然后针对系统中仍然存在的高阶非线性和未知不确定性,引入一种动态结构自适应神经网络,以对消非线性和不确定性的影响.这种自适应神经网络的隐层神经元随着跟踪误差的增大而在线增加,使得神经网络能以较少的神经元获得最佳的逼近效果,加快神经网络的运算速度,提高整个系统的动态性能.最后用飞行跟踪控制系统的示例证明本文方法是有效的.  相似文献   

12.
基于神经网络的非线性自适应输出反馈控制   总被引:1,自引:0,他引:1  
针对能够采用仿射非线性表示的含有未建模动态的SISO非线性系统,讨论了一种基于神经网络的自适应控制方法,该方法对受控对象的已知部分,有用反馈线性化方法设计控制器,用神经网络在线补偿未建模动态及外部干扰等引起的误差,从而实现自适应控制。对具有未建模动态的双车倒立摆设计了输出反馈自适应控制系统,仿真表明该方法是有效的。  相似文献   

13.
在动态逆飞控系统中处理非定常气动力的方法   总被引:1,自引:0,他引:1  
主要考虑大迎角非定常气动力对飞控系统的影响,并给出在动态逆飞行控制系统中的抑制这种影响的方法。非定常气动力表现在气动参数上是出现滞环现象,本文根据已成的成果,主要讨论与飞机纵向控制有关的问题。  相似文献   

14.
提出了两种基于模糊控制的神经网络控制器的设计方案,并将这两种控制器应用于综合火力/飞行系统的耦合控制。两种方法的主要差别在于获取样本的方式不同。方案1是通过对模糊控制方法得到的响应曲线采样获取样本,由Back-Propagation学习算法训练神经网络,得到一组固定权值。神经网络控制器采用这组权值以“联想记忆”的方式工作。方案2则从用模糊控制算法得到的控制查询表中获取样本。因为模糊控制查询表比较大,采样时依据该表构成的相平面图的特点,对采样点数进行了压缩,使所设计的神经网络的规模可以接受,其余的设计步骤与方案1基本相同。仿真结果表明,采用这两种神经网络控制器的控制系统都具有良好控制性能  相似文献   

15.
核事故发生后,为快速评估事故严重程度,需要对源项释放率进行估算。本文选取I-131,Cs-137,Xe-133和Kr-85四种核素的释放率为目标信号,利用Matlab建立基于BP神经网络的核事故四核素源项反演模型。计算结果表明,在单隐层节点数为5~60范围内,训练均方差 随节点数增加先减小后增大,在节点数为25时达到最小值41.1%。学习速率在0.01~0.2范围内时,增大学习率可减小训练均方差与各核素相对误差。对单隐层节点数为25,学习速率为0.2的训练结果进行测试,4种核素的源项估计相对误差分别为56.7%,49.1%,92.4%和92.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号