首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高斯粒子滤波器及其在非线性估计中的应用   总被引:1,自引:0,他引:1  
为了解决非线性、非高斯系统估计问题,讨论了一种新的滤波方法——高斯粒子滤波算法。通过基于重要性采样和蒙特卡罗模拟方法得到一高斯分布来近似未知状态变量的后验分布。在符合高斯假设和一定的粒子数的情况下,谈算法可以获得近似最优解。与粒子滤波算法相比,其优点是不需要重采样步骤和不存在粒子退化现象。在滤波精度、运算时间等方面与扩展卡尔曼滤波、Unscented滤波、高斯厄米特滤波及一般的粒子滤波进行了比较分析,仿真结果表明该算法性能优于其他算法。  相似文献   

2.
一种改进的UGPF算法及其在导航问题中的应用   总被引:1,自引:0,他引:1  
通过对高斯粒子滤波(GPF)算法的分析与总结,提出了一种基于无味卡尔曼滤波(UKF)方法的改进GPF算法(改进UGPF算法).该方法主要利用UKF获取更优的重要性抽样函数,同时优化GPF滤波的算法流程结构.最后通过二维目标跟踪过程中位置导航参数估计问题,对该算法进行了仿真分析,所得结果验证了该算法的有效性.  相似文献   

3.
粒子滤波是一种基于贝叶斯估计理论和蒙特卡罗理论的实时目标跟踪方法,具有较为灵活的并行化跟踪方式,能够较好地维持跟踪目标的假设状态,具有较好的跟踪效果和鲁棒性。上升段飞行器目标飞行视频图像跟踪是火箭等目标飞行监控的重要阶段,但现阶段对飞行器上升段的视频图像跟踪主要依靠人工手动操作云台控制器,实现视频图像中的飞行器跟踪,跟踪图像存在跟踪滞后、画面抖动等现象,跟踪效果受人为因素影响较大。本文提出一种基于粒子滤波方法的上升段飞行器目标视频图像跟踪方法,建立飞行器目标粒子滤波跟踪模型实现对飞行器目标的识别和跟踪,在识别和跟踪的基础上建立云台控制模型,通过对云台的智能控制获得飞行器上升段的高质量图像。采用火箭发射的视频图像作为模型验证的实验数据,检验飞行器目标的跟踪效果。  相似文献   

4.
传统的扩展卡尔曼滤波(Extended Kalman filter, EKF)算法应用于未来高超、空天飞行器的组合导航系统时,因其模型线性化展开会导致模型不准确,从而引起导航精度下降;采用蒙特卡洛方法来实现递推贝叶斯估计问题的粒子滤波(Particle filter,PF)算法能有效避免引入线性化误差,具有一定的优势。据此,针对高超、空天飞行器在发射过程中通常需要直接获得发射惯性系下的高精度导航参数的需求,提高发射惯性系下弹载组合导航系统滤波算法的精确性就尤为重要,PF滤波算法无需对非线性系统进行线性化展开即可直接实现对非线性系统的状态误差估计。为此,本文将PF滤波算法引入空天飞行器SINS/GPS/CNS多信息融合组合导航系统,设计了发射系下基于联邦滤波器的PF滤波算法,实现了对组合导航系统状态参数的直接建模估计。算法仿真结果表明,相较于发射系下SINS/GPS/CNS组合导航系统联邦EKF滤波算法,PF滤波算法有效提高了组合导航系统滤波精度。  相似文献   

5.
基于自适应容积粒子滤波的车辆状态估计   总被引:1,自引:1,他引:0  
针对车辆状态估计中由模型的强非线性、噪声的非高斯分布等相关因素导致估计精度下降甚至发散的问题,本文提出了基于自适应容积粒子滤波(Adaptive cubature particle filter,ACPF)的车辆状态估计器。首先基于非稳态动态轮胎模型,构建高维度非线性八自由度车辆模型。其次利用自适应容积卡尔曼滤波(Adaptive cubature Kalman filter,ACKF)算法更新基本粒子滤波(Particle filter,PF)算法的重要性密度函数,以完成自适应容积粒子滤波算法设计。利用车载传感器信息,运用ACPF算法实现对车辆的侧倾角、质心侧偏角等关键状态变量高精度在线观测。搭建Simulink-Carsim联合仿真平台进行了算法的验证,结果表明该算法状态估计精度高于传统无迹粒子滤波(Unscented particle filter,UPF)算法,且算法运算效率高于UPF算法,而传统PF估计值发散。研究结果为实现车辆动力学精准控制提供了理论支持。  相似文献   

6.
基于QPSO粒子滤波的航空发动机突变故障诊断   总被引:1,自引:1,他引:0  
针对标准粒子滤波算法对突变故障诊断迟缓的问题,提出了量子行为粒子群优化(Quantum-behaved particle swarm optimization,QPSO)的粒子滤波算法。该算法引入权值偏差系数的概念,当权值偏差系数超出设置的阈值时,认为系统发生故障,并结合最新的观测值,将量子行为粒子群优化算法融入到粒子的采样过程中,驱使粒子向高似然区域移动,提高粒子群对突变故障的估计性能。仿真结果表明,与标准粒子滤波算法相比,量子行为粒子群优化的粒子滤波算法显著提高了对突变故障的反应速度。  相似文献   

7.
针对失效率函数可变的非线性动态系统,基于系统状态建立参数未知的动态失效率模型。将历史状态和Nelson-Aalen估计的失效率数据作为训练样本,利用具有快速且精确学习能力的径向基网络逼近动态失效率函数。针对系统的非线性,通过粒子滤波方法对运行中的状态进行在线估计,并由此确定随状态改变的系统失效率,从而对可靠性进行实时评估与预测。通过对带有疲劳裂纹增长的机械系统进行仿真,充分验证了这种可靠性预测方法的可行性和有效性。  相似文献   

8.
基于粒子滤波算法的非刚性目标实时跟踪   总被引:1,自引:0,他引:1  
基于颜色的粒子滤波实时跟踪算法主要是利用视频图像的颜色直方图信息,综合考虑运动预测和帧间的相似性来确定目标的位置。针对影响粒子滤波算法性能的关键技术,提出了基于混合高斯模型的粒子滤波算法,并将其用于基于颜色的非刚性目标的实时跟踪相关问题。该算法使用混合高斯模型表示粒子,在每个时刻的修正步骤之后,采用EM算法对粒子进行重新拟合。仿真实验表明,本算法在保证跟踪准确度的同时,可以满足实时跟踪的要求。  相似文献   

9.
基于粒子滤波和似然比的接收机自主完好性监测算法   总被引:1,自引:0,他引:1  
由于粒子滤波算法在处理非线性系统非高斯噪声问题具有较大的优势,提出将粒子滤波算法与对数似然比方法有机结合应用于接收机自主完好性监测(Receiver autonomous integrity monitoring,RAIM)中。通过粒子滤波算法对状态进行精确估计,利用对数似然比建立一致性检验统计量进行故障检测。在建立全量累加对数似然比和部分累加对数似然比检验统计值的基础上,通过比较系统各状态累加对数似然比和检测阈值之间的关系,进而对卫星故障进行检测。对算法进行了数学建模,描述了RAIM算法流程。通过实测数据对提出的RAIM算法进行验证,结果表明:粒子滤波在非高斯测量噪声情况下可以对GPS接收机状态进行精确的估计,利用对数似然比建立的一致性检验统计量能有效地检测并隔离故障卫星,验证了该算法应用于接收机自主完好性监测的可行性和有效性。  相似文献   

10.
余度MEMS-IMU/GPS组合导航系统   总被引:2,自引:1,他引:1  
对采用余度配置的MEMS-IMU/GPS组合导航系统进行了研究。分析了微小型组合导航系统的特点和误差模型,针对惯性/GPS伪距组合导航模式下,卡尔曼滤波器需要对量测方程线性化的缺点,提出了基于改进平淡粒子滤波的滤波算法。该算法采用权值控制参数决定粒子是否进入平淡卡尔曼滤波器,有效降低了滤波计算量,并和UPF算法精度相当。研究表明,改进平淡粒子滤波算法对系统性能有明显提高,在GPS信号受到遮挡、暂时不可用的情况下,具有较好的抑制误差作用,适合余度微惯性/GPS组合导航系统的应用。  相似文献   

11.
为了提高机场场面监视的可靠性以及监视数据的连续性,本文采用匀速运动(Constant Velocity,CV)、匀加速运动(Constant Acceleration,CA)和匀速转弯运动(Constant Turning,CT)三种运动模型,将交互式多模式算法(Interacting Multiple Model,IMM)与粒子滤波算法(Particle Filter,PF)相融合,充分发挥两种算法的优点,并结合机场地图信息分别对观测信息和估计输出结果进行修正,进一步提高机场场面移动目标跟踪的精度。仿真实验结果表明,本文提出的IMM-PF改进算法在机场场面移动目标跟踪的应用中具有更大的可行性和优越性。  相似文献   

12.
非线性滤波应用于医学图像后处理   总被引:2,自引:0,他引:2  
讨论了典型的非线性滤波技术及其性质,选取了性能较好的滤波模板应用于医学图像后处理,并从平滑效果和锐化效果上与线性滤波做出比较.  相似文献   

13.
本文将数值稳定性好、计算量小的序列U-D分解滤波算法应用到状态方程为线性、观测方程为非线性的GPS动态用户导航系统中。文中建立了高动态用户数学模型,推导了以伪距为观测量的系统测量方程。在给定飞机航迹的情况下,对系统进行了数字仿真。仿真结果表明,U-D分解滤波算法能更有效地适合动态用户GPS导航系统。  相似文献   

14.
SPT方法在纳米粒子布朗运动观测中的应用   总被引:2,自引:0,他引:2  
纳米粒子布朗运动特性对Micro-/Nano-PIV的使用和与粒子相关的物理现象的研究有重要意义.观测了200nm荧光粒子的布朗运动,利用单粒子追踪(SPT)算法和自编程序处理图像,获得粒子的均方位移,计算了实验扩散系数Dexp为2.09×10-12 m2/s.与Stokes-Einstein公式估计的理论扩散系数Dth相比,二者量阶一致,但实验扩散系数的数值偏小约5%.对相关的实验误差进行了分析.  相似文献   

15.
GPS/INS组合导航系统的鲁棒滤波研究   总被引:1,自引:0,他引:1  
卫星定位/惯性导航(GPS/INS)系统可形成优势互补而使短期和长期精度都有保证。GPS/INS组合导航系统通常使用Kalman滤波进行信息融合来削弱或消除系统噪声和测量误差,然而使用Kalman滤波要求系统动态模型精确和噪声的统计参数已知。但实际中构造精确的系统动态模型是十分困难的,并且噪声的统计参数也很难事先精确预知。对H∞问题进行了理论上的分析,构造了H∞滤波来提高系统对参数不确定的鲁棒性。仿真结果表明H∞滤波对模型的不确定性的鲁棒性比应用Kalman滤波的方法有较大的提高。  相似文献   

16.
水流场PIV测试系统示踪粒子特性研究   总被引:12,自引:0,他引:12  
粒子图像测速技术(PIV)是一种新的流场测量技术,通过对流场中的示踪粒子进行多次曝光成像,获得具有相关性的示踪粒子图像,利用软件对粒子图像进行处理后可得到被测流场的信息.水流场PIV测量利用合适的示踪粒子运动来表征流场状况,示踪粒子的特性对PIV最终测量结果影响很大.讨论了密度、直径、表面反射率等示踪粒子特性对系统实验测量的影响,并特别针对水流场斜入射离轴PIV测试,选择合适的特性参数设计研制了一种简单实用的水流场示踪粒子.通过在直径为100~200μm的聚苯乙烯微球上利用化学方法进行表面镀银,使示踪粒子具有高的光散射特性,实验结果表明这种微粒非常适合于水流场示踪.  相似文献   

17.
应用三维粒子动态分析仪 (3D PDA)测得了矩形截面三分支联接的三维速度分布。在测量中 ,经过理论分析与对比试验 ,选择了蚊香烟雾作为散射粒子。实验结果表明 ,在只有支管进气的情况下 ,在总管的封闭端和支管下游总管壁面处产生了回流 ;以及气流从支管进入总管后由于截面扩张在总管横截面上所诱发的二次流 ,并且二次流现象只发生在支管下游附近的总管横截面上。  相似文献   

18.
一种综述粒子图像测速(Particle Image Velocimetry)的非接触、瞬时、动态、全流场的和本质上是直接的速度场测量技术,成为当今最实用和非常有潜力的流体力学全流场观测(Full Flow Field Observation & Measurement)技术.回顾和展望PIV(包括DPIV,SPIV,HPIV等)及其应用的进展和前景.面临新世纪,PIV技术有望最终攻克一个容积的三维速度场时间历程(3Dt-3C)的观测和推动流体力学进入十分活跃的新时期.  相似文献   

19.
光学元器件随飞行器在大气中飞行时,其工作性能越来越多地受到大气悬浮汇聚微粒的影响。大气微粒在复杂流场中呈现何种运动汇聚效应,对于合理准确评估机载光学元器件的工作效能具有十分重要的工程意义,而复杂气动流场中微粒分布状态的预估一直是飞行器外界环境研究中的一个难点。气动问题的复杂性、大气中微粒的多样性一直是制约各种试验手段展开、数值模型建立的主要因素。利用先进的激光粒子图像技术,在风洞中对舵面旋涡主导的复杂流场中的微粒速度及分布特性进行了实验研究。在测量舵面翼梢脱落旋涡特性的基础上,通过激光片光扫描流场全域,同时高帧频CCD相机同步曝光,利用PIV 拍摄到的流场中涡流截面内微粒分布的瞬态图像。结合图像后处理技术,对原始粒子图像进行互相关、二值化处理,通过对图像区域内的灰度值计算,统计相对流场截面内的粒子浓度系数,得到在复杂旋涡结构流场内瞬态粒子的分布特性规律。研究结果表明,利用大气中微粒在激光片光下的米氏散射原理,可以有效地拍摄到复杂流场结构下粒子光学散射及分布的特性图像,解决了传统环境测试设备无法对复杂条件下流场内粒子分布进行实时测量的缺陷;在旋涡为主导的流场中,大气中的微粒由向心力牵引,在涡核周围达到平衡运动状态,微粒环绕涡核形成一条环状带,这一区域中的粒子浓度系数要远大于自由流场中的微粒,涡核中心粒子呈“空洞”状态。  相似文献   

20.
针对在前馈/反馈混合控制中提高控制通道阻尼的问题,基于自适应滤波理论,提出适用于单输入单输出(SISO)和多输入多输出(MIMO)控制通道的时域自适应反馈主动阻尼设计方法。研究了自适应过程的理想期望信号的构造、SISO情况下闭环控制通道与反馈控制器同时进行自适应设计以及MIMO控制通道阻尼问题的简化与设计方法的拓展等问题;同时,基于某主动隔振试验平台的实测结果,对所有研究内容进行SIMULINK模型仿真。时域自适应反馈主动阻尼设计是高效的主动阻尼设计方法,并且为小阻尼动态系统的增阻设计提供了统一的方法框架。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号