首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Based on the analysis of a strong solar flare X1.6/2B on October 19, 2001 in the active region 9661, accompanied by a coronal mass ejection (CME) of the halo type, a topological model of development of this solar event is suggested. The model considers a unified process of development of CME and a chromosphere flare. According to the model, this process has a common source of energy supply: the turbulent current layer lying between the arcade of flare loops and the surface of CME going away. The structures on the ends of flare bands (SEFB) represent in this model chromosphere feet of the system of large-scale coronal magnetic arches at the initial stage of the dynamic processes whose evolution results in CME. Peripheral structures (PS) of the flare (elongated double bright emission strips beyond the limits of the active region) are interpreted as chromosphere bases of magnetic field lines that form an external shell (braid) of the CME at the late stage of the flare.  相似文献   

2.
When studying microwave emission of active regions on the Sun, an effect of parametric resonance between 5-min velocity oscillations in the solar photosphere and sound oscillations of coronal magnetic loops modulating the microwave emission has been discovered for the first time. The effect shows itself as simultaneous excitation in coronal magnetic loop of oscillations with periods 5, 10, and 3 min, which correspond to the pumping frequency, subharmonic, and the first upper frequency of parametric resonance. The parametric resonance can serve as an effective channel of transporting the energy of photospheric oscillations into the upper layers of the solar atmosphere. This effect opens up the important prospects in understanding the mechanisms of coronal plasma heating.  相似文献   

3.
The tensor of permittivity for the system “electron beam - plasma of the interplanetary space” is derived in the approximation of geometrical optics. The problem is one-dimensional; all parameters such as density of the beam and of the solar wind plasma, and the induction of the interplanetary magnetic field are assumed to be dependent only on the distance to the Sun. The beam is generated by an active region during a solar flare, and it is a source of radio bursts of type III in the interplanetary space. The tensor of permittivity was obtained to close field equations by a material equation. On the basis of these equations it becomes possible to study theoretically the amplitude-frequency characteristics of the radio bursts as disturbances of the above-described beam-plasma system.  相似文献   

4.
Complex analysis is performed for five active regions on the Sun where strong X-class solar flares occurred in 2011–2012. Radio emissions from the regions were investigated based on daily multi-wave observation of the Sun with the RATAN-600 radio telescope in the 1.6–8.0 cm wavelength range. It is shown that, as in eruptive events that were investigated earlier using the RATAN-600 radio telescope, 1–2 days (in some cases 14–17 h) prior to a strong flare one observes a developing source over the neutral line of photospheric magnetic field, which is projected on the region of the maximum approach of fields of opposite signs. In most cases this source became a dominant component in the microwave emissions of the active region prior to a flare. Simultaneously, analyzing magnetographic measurements of the same active regions, based on the data of the SDO space observatory, it has been shown that development of X-class flares proceeds at sufficiently high levels (F ~1022 Mx) of magnetic flux in groups of sunspots and at sharp growth of flux gradient (G ~ 20 × 1020 Mx/deg), which reflects the geometric approach of sunspots with opposite polarities of the magnetic field. These results can be used to develop methods for forecasting strong flares on the Sun.  相似文献   

5.
We present the results of processing three 256-min series of observations of quasi-periodic oscillations of the field of line-of-sight velocities in three sunspots. The Doppler shifts were determined simultaneously for six spectral lines formed at different heights in the solar atmosphere. In addition to the well-known high-frequency (periods of 3–5 min) oscillations, a band of low-frequency oscillations with periods of 60–80 min is revealed in the spectra of the sunspot umbra and magnetic elements located in immediate proximity of the sunspot. Unlike the short-period modes, the power of the long-period mode of line-of-sight velocity oscillations in the sunspot decreases sharply with height: these oscillations are distinctly seen in the line formed at a height of 200 km and almost are not seen in the line with the formation height of 500 km. This is indicative of different physical nature of the short-period and long-period oscillations of a sunspot. If the former are caused by slow magnetosonic waves within the field tube of the spot, the latter are representative of global vertical-radial oscillations of a magnetic element (spot, pore) as a whole near the position of a stable equilibrium.  相似文献   

6.
The character of statistical distributions of the intensity of energetic charged particles, solar wind flux, and the interplanetary magnetic field strength is analyzed using the data obtained by the Voyager 1 and Voyager 2 spacecraft in the distant heliosphere. A comparison of the distributions in the region of crossings of shock wave fronts in 1991 and in 2004 is carried out, and their similarities and differences are discussed.  相似文献   

7.
The main goal of this paper is to get physically informative comprehensive data about dynamics of the solar magnetic field, geomagnetic field, and interplanetary magnetic field over large time scales. The total sunspot magnetic flux, aa and IDV indices of geomagnetic activity, the IMF strength, the dipole-octopole index of the large-scale magnetic field of the Sun, and the open magnetic flux are reconstructed for 400 years. The reconstruction of the π index of the large-scale polar magnetic field of the Sun is performed for 150 years.  相似文献   

8.
We present the results of spectral and polarization observations of two large sunspot groups, NOAA 0484 and NOAA 0486 + 0488, which determine high solar activity in October–November 2003. The observations are made with the Large Pulkovo Radio Telescope (LPRT) in the range 2.7–20 cm, the one-dimensional (E-W) resolution of observations being 1–6 arc min, respectively. The main characteristics of the corona radio emission above these active regions are measured, allowing us to follow their dynamics during the entire period of their existence on the solar disk with a period of one day. The analysis of the obtained results is presented from the point of view of the well-known Tanaka-Enome criterion [1–2] (on the basis of this criterion one can predict strong flares from characteristics of radio emission of an active region in quasi-quiet state). Using the activity in October–November 2003 as an example, we demonstrate the capabilities of a new method for estimating the level of solar activity. It was developed on the basis of long-term observations of the Sun by LPRT [3].Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 585–594.Original Russian Text Copyright © 2004 by Borisevich, Ilin, Korzhavin, Peterova, Topchilo, Shpitalnaya.  相似文献   

9.
The auroral kilometric radio emission (AKR) is the most powerful sporadic radio emission of the terrestrial magnetosphere. It was discovered in 1965 by Soviet scientists in the experiment onboard the Electron-2 satellite [1]. The AKR still continues to stay an object of a large interest and detailed study (see, for example, a review by Gurnett [2]). The mechanism of cyclotron maser instability proposed by Wu and Lee [3] is a commonly accepted mechanism of AKR generation. We have demonstrated the presence of powerful AKR simultaneously in both hemispheres of the Earth in the period from August 1995 to August 1997, including summer-winter periods, on particular examples of registration of this emission in [4] where the directivity and mechanism of the emission were studied. Since in that period AKR was observed in the vicinity of perigees of the satellite orbit in both hemispheres almost at every orbit (3.8 days), we have a possibility to trace in more detail the changes in the emission power from one orbit to another in 1996 during a deep minimum of solar activity.  相似文献   

10.
The effect of Alfven-type oscillations in a coronal magnetic arch on modulation of the gyrosynchrotron radiation and development of the ballooning instability in the arch is considered. On the basis of the energy method and the method of normal modes, the expressions are obtained for increments of ballooning instability at its swinging by natural oscillations of the arch. The conclusion is drawn that bending oscillations, which do not actually compress the plasma and, therefore, represent the Alfven-type modes, unlike the radial oscillations, are capable, under solar corona conditions, to effectively swing ballooning instability and, as a consequence, play a part of a trigger for solar flares. The ballooning instability of coronal arches is shown to be capable of causing formation of helmet-shaped structures in the lower solar corona. On the basis of calculations of the intensity modulation depth and the degree of circular polarization of non-thermal gyrosynchrotron radiation, under the assumption of excited Alfven oscillations of a coronal arch, the conclusion is drawn, that microwave observations at a frequency of > 10 GHz can be used for studying the conditions of excitation and propagation of Alfven modes in flare loops. The consequences of obtained results are discussed using the flare on April 15, 2002 as an example.  相似文献   

11.
12.
In the 1990s, based on detailed studies of the structure of active regions (AR), the concept of the magnetosphere of the active region was proposed. This includes almost all known structures presented in the active region, ranging from the radio granulation up to noise storms, the radiation of which manifests on the radio waves. The magnetosphere concept, which, from a common point of view, considers the manifestations of the radio emission of the active region as a single active complex, allows one to shed light on the relation between stable and active processes and their interrelations. It is especially important to identify the basic ways of transforming nonthermal energy into thermal energy. A dominant role in all processes is attributed to the magnetic field, the measurement of which on the coronal levels can be performed by radio-astronomical techniques. The extension of the wavelength range and the introduction of new tools and advanced modeling capabilities makes it possible to analyze the physical properties of plasma structures in the AR magnetosphere and to evaluate the coronal magnetic fields at the levels of the chromosphere–corona transition zone and the lower corona. The features and characteristics of the transition region from the S component to the B component have been estimated.  相似文献   

13.
All significant short-term disturbances of the near-Earth space are caused exclusively by solar flare events and regions in the solar corona with the magnetic field open into the interplanetary space (coronal holes). Flare processes occur as a consequence of the interactions of new emerging magnetic fluxes within (flares) and outside (filament ejections) the active regions with already existing magnetic fields. The observation of emerging new magnetic fluxes and the estimate of their magnitude and the emerging rate allow one to forecast solar flares and filament ejections and estimate their degree of geoeffectiveness. The main agents that visualize the propagation of disturbance from solar flares and filaments in the solar corona and the interplanetary space are coronal mass ejections, the characteristics of which ideally allow one to estimate the possible disturbance of the geomagnetic field, the possible growth of high-energy charged particle fluxes in the near-Earth space. For successful forecast of geoeffective active phenomena on the Sun and their consequences in the near-Earth space, it is necessary to know the situation on the Sun for the last 3 days taking into account the development and characteristics of the current cycle and the epoch of solar activity.  相似文献   

14.
Some morphological features of solar magnetic fields in the chromosphere and corona are considered based on studying various observational data. These data are compared to the results of observation of the solar wind and interplanetary magnetic field, as well as to the data on fluxes of solar cosmic rays. New specific features are found in the solar wind structure, and new additional indications of sources of the solar wind are obtained. The properties of the active regions and coronal holes are considered. A model of the ascending stream-like plasma flow is suggested. It flows around the discrete arched magnetic field tubes in the solar atmosphere and stretches them out into interplanetary space.  相似文献   

15.
Poor quality of functioning of GPS during solar flares on December 6 and 13, 2006 is analyzed in this paper. These flares were accompanied by extremely high (unexampled) level of the solar radio emission flux. A comparison is made of these events with the solar flare on October 28, 2003. Statistically reliable experimental evidence is obtained that GPS positioning was partially paralyzed on the sunlit side of the Earth during the strongest bursts of solar radio emission. The obtained results give a serious ground to revise the role played by space weather factors in operation of modern satellite systems and to take these factors into account more carefully, when such systems are designed and exploited.  相似文献   

16.
The results of the interplanetary scintillation observations performed in the period of the maximum of solar activity from April 2013 to April 2014 on the BSA LPI radio telescope at the frequency 111MHz are presented. Fluctuations of the radio emission flux were recorded round the clock for all sources with a scintillating flux of more than 0.2 Jy falling in a strip of sky with a width of 50° over declinations corresponding to a 96-beam directional pattern of the radio telescope. The total number of sources observed during the day reaches 5000. The processing of the observational data was carried out on the assumption that a set of scintillating sources represents a homogeneous statistical ensemble. Daily two-dimensional maps of the distribution of the level of scintillations, whose analysis shows the strong nonstationarity and large-scale irregularity of the spatial distribution of solar wind parameters, were constructed. According to maps of the distribution of the level of scintillations averaged over monthly intervals, the global structure of the distribution of the solar wind was investigated in the period of the maximum of solar activity, which was found to be on the average close to spherically symmetric. The data show that on a spherically symmetric background an east–west asymmetry is observed, which indicates the presence of a large-scale structure of a spiral type in the solar wind.  相似文献   

17.
Results of almost two years (January 1999–October 2000) of continuous observations of auroral kilometric radio emission with the instrument AKR-X onboard the high-apogee satellite of the Earth Interball-1 are presented. The observations were conducted at the growth stage (in 1999) and in the maximum (2000) of solar activity within the 100–1500 kHz frequency band. The results of AKR detection in the vicinity of the maximum of its spectrum at a frequency of 252 kHz are presented. Both similarity (for example, the character of global directivity) and important differences from the AKR emission observed during the solar activity minimum [5] are found. Together with very high sporadicity, strong seasonal changes in the intensity are typical for the emission. It is completely absent in the spring-summer period in the Northern Hemisphere and is strongly suppressed in this period in the Southern Hemisphere. Probable nature of these features of AKR is discussed.  相似文献   

18.
Spatial structure of the magnetosheath of the Earth was studied under the conditions when no sharp (more than 40° during 5 min) changes in the interplanetary magnetic field direction were observed. On the basis of 24 flights of the Interball-1 satellite through the magnetosheath, it is found that three regions differing from each other by parameters of the field and plasma can be observed in the magnetosheath under the above-indicated conditions. These regions also differ from the solar wind region before front of the Earth’s magnetospheric bow shock. Empirical distributions of parameters were studied in each region. Taking into account the influence of the interplanetary magnetic field direction on the processes in the magnetosheath, the cases of quasi-perpendicular and quasi-parallel shock waves were considered separately. The study showed that the distribution of parameters in the selected regions (in the solar wind before front of the bow shock, in the magnetosheath behind the bow shock (post-shock), in the region of the magnetosheath with minimal fluctuations in the field, and in the inner magnetosheath) differ from each other at any interplanetary magnetic field direction.  相似文献   

19.
Results of the analysis of 327 sessions of radio occultation on satellite-to-satellite paths are presented. The data are taken in the nighttime polar ionosphere in the regions with latitudes of 67°–88°, and in the period of high solar activity from October 26, 2003 to November 9, 2003. Typical ionospheric changes in the amplitude and phase of decimeter radio waves on paths GPS satellites-CHAMP satellite are presented. It is demonstrated that these data make it possible to determine characteristics of the sporadic E s structures in the lower ionosphere at heights of 75–120 km. Histograms of distribution of the lower and upper boundaries, thickness, and intensity of the E s structures are presented. Dispersion and spectra of amplitude fluctuations of decimeter radio waves caused by small-scale irregularity of the ionospheric plasma are analyzed. The relation of the polar E s structures and intensity of small-scale plasma irregularity to various manifestations of solar activity is discussed. The efficiency of monitoring the ionospheric disturbances caused by shock waves of the solar wind by the radio occultation method on satellite-to-satellite paths is demonstrated.  相似文献   

20.
This paper presents the results of optical observations in the active space experiment “Radar-Progress” on April 17, 2013, after switching on the approach-correction engine of the Progress M-17M cargo spacecraft at thermospheric heights (412 km), are presented in this paper. During engine operation, a region of enhanced emission intensity has been recorded. It was presumably related to the scatter of twilight solar emission at the engine exhausts in the cargo spacecraft orbit and, probably to the occurrence of an additional emission in the atomic oxygen line [OI] 630 nm. The maximum observed dimensions of the emission region were ~350 and ~250 km along the orbit and across it, respectively. The velocity of the expansion of the emission region at the first moments after the initiation of engine operation was ~7 and ~3.5 km/s along the orbit and across it, respectively. The maximum intensity of the disturbed region is estimated to be a value equivalent to ~40–60 R within the spectral band of 2 nm. No optical manifestation, which would exceed the natural variations in brightness of the night airglow and which would be related to possible large-scale modification of the ionosphere, was detected in the natural emission lines [O] 557.7 and 630.0 nm in a zone remote from the place of injection of engine exhausts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号