首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
DNA double-strand breaks (DSB) are induced linearly with absorbed dose both for sparsely and densely ionizing radiations. By enzymatic repair the linear relationship between the number of DSB and absorbed dose is converted into a non linear one. Furthermore, the RBE-values of high LET radiations for residual DSB increase with increasing amount of DSB repair especially in the low dose range. Unrepaired and/or misrepaired DSB are supposed to be responsible for chromosomal aberrations, cell killing, oncogenic cell transformation and gene mutation. At low doses, for these endpoints much higher RBE-values than those for initial DSB are observed. However, with increasing doses the RBE-values for these endpoints approach those for initial DSB. These observations are likely to be interpreted using the following two parameters of the energy deposition structure: 1. The distribution of clusters with respect to their size at the nm-scale and to the number of ionizations per cluster (cluster distribution). 2. The distribution of distances between clusters of definite size and with definite number of ionizations (distance distribution of clusters). For the induction of DSB solely the ionization density in clusters of nm-dimensions (i.e. the cluster distribution) is important. For unrepaired or misrepaired DSB (responsible for chromosome aberrations, cell killing, oncogenic cell transformation and gene mutation) both the cluster distribution and the distance distribution of clusters are relevant. At low doses the distance distribution of clusters along a single particle track determines the RBE-value. However, with increasing dose the distribution of clusters produced by all particles traversing the cell nucleus becomes increasingly determinant. Here, solely the cluster distribution is important as it is the case for the induction of DSB.  相似文献   

2.
Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step process [correction of processes], we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 angstroms may cause cell transformation and that two DNA breaks formed within 20 angstroms may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double strand breaks in mammalian cells. At present the role of oncogenes in radiation cell transformation is unclear.  相似文献   

3.
Chromosomal aberrations induced by high-energy iron ions with shielding.   总被引:1,自引:0,他引:1  
Biophysical models are commonly used to evaluate the effectiveness of shielding in reducing the biological damage caused by cosmic radiation in space flights. To improve and validate these codes biophysical experiments are needed. We have measured the induction of chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to 500 MeV/n iron ion beams (dose range 0.1-1 Gy) after traversing shields of different material (lucite, aluminium, or lead) and thickness (0-11.3 g/cm2). For comparison, cells were exposed to 200 MeV/n iron ions and to X-rays. Chromosomes were prematurely condensed by a phosphatase inhibitor (calyculin A) to avoid cell-cycle selection produced by the exposure to high-LET heavy-ion beams. Aberrations were scored in chromosomes 1, 2, and 4 following fluorescence in situ hybridization. The fraction of aberrant lymphocytes has been evaluated as a function of the dose at the sample position, and of the fluence of primary 56Fe ions hitting the shield. The influence of shield thickness on the action cross-section for the induction of exchange-type aberrations has been analyzed, and the dose average-LET measured as a function of the shield thickness. These preliminary results prove that the effectiveness of heavy ions is modified by shielding, and the biological damage is dependent upon shield thickness and material.  相似文献   

4.
A major objective of our heavy-ion research is to understand the potential carcinogenic effects of cosmic rays and the mechanisms of radiation-induced cell transformation. During the past several years, we have studied the relative biological effectiveness of heavy ions with various atomic numbers and linear energy transfer on neoplastic cell transformation and the repair of transformation lesions induced by heavy ions in mammalian cells. All of these studies, however, were done with a high dose rate. For risk assessment, it is extremely important to have data on the low-dose-rate effect of heavy ions. Recently, with confluent cultures of the C3H10T1/2 cell line, we have initiated some studies on the low-dose-rate effect of low- and high-LET radiation on cell transformation. For low-LET photons, there was a decrease in cell killing and cell transformation frequency when cells were irradiated with fractionated doses and at low dose rate. Cultured mammalian cells can repair both subtransformation and potential transformation lesions induced by X rays. The kinetics of potential transformation damage repair is a slow one. No sparing effect, however, was found for high-LET radiation. There was an enhancement of cell transformation for low-dose-rate argon (400 MeV/u; 120 keV/micrometer) and iron particles (600 MeV/u; 200 keV/micrometer). The molecular mechanisms for the enhancement effect is unknown at present.  相似文献   

5.
6.
Beyond the magnetic influence of the Earth, the flux of galactic cosmic radiation (GCR) represents a radiological concern for long-term manned space missions. Current concepts of radiation quality and equivalent dose are inadequate for accurately specifying the relative biological "efficiency" of low doses of such heavily ionising radiations, based as they are on the single parameter of Linear Energy Transfer (LET). Such methods take no account of the mechanisms, nor of the highly inhomogeneous spatial structure, of energy deposition in radiation tracks. DNA damage in the cell nucleus, which ultimately leads to the death or transformation of the cell, is usually initiated by electrons liberated from surrounding molecules by the incident projectile ion. The characteristics of these emitted "delta-rays", dependent primarily upon the charge and velocity of the ion, are considered in relation to an idealised representation of the cellular environment. Theoretically calculated delta-ray energy spectra are multiplied by a series of weighting algorithms designed to represent the potential for DNA insult in this environment, both in terms of the quantity and quality of damage. By evaluating the resulting curves, and taking into account the energy spectra of heavy ions in space, a relative measure of the biological relevance of the most abundant GCR species is obtained, behind several shielding configurations. It is hoped that this method of assessing the radiation quality of galactic cosmic rays will be of value when considering the safety of long-term manned space missions.  相似文献   

7.
The paper reviews radiation exposures recorded during space flights of the US and USSR. Most of the data are from manned missions and include discussion of absorbed dose and dose rates as a function of parameters such as altitude, inclination, spacecraft type and shielding. Preliminary data exist on the neutron and HZE-particle component, as well as the LET spectra. For low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence upon inclination. The doses range from about 6 millirad per day for the Space Transportation System No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. Complete shielding from the galactic cosmic rays does not appear practical because of spacecraft weight limitations.  相似文献   

8.
Cytogenetic effects of energetic ions with shielding   总被引:1,自引:0,他引:1  
In order to understand the effects of shielding on the induction of biological damages by charged particles, we conducted experiments with accelerated protons (250 MeV) and iron particles (1 GeV/u). Human lymphocytes in vitro were exposed to particle beams through polyethylene with various thickness, and chromosomal aberrations were determined using FISH technique. Dose response curves for chromosome aberrations were obtained and compared for various particle types. Experimental results indicated that for a given absorbed dose at the cell, the effectiveness of protons and iron particles in the induction of chromosomal aberrations was not significantly altered by polyethylene with thickness up to 30-cm and 15-cm respectively. Comparing with gamma rays, charged particles were very effective in producing complex chromosomal damages, which may be an important mechanism in alterating functions in nondividing tissues, such as nervous systems.  相似文献   

9.
Radiobiological effects of heavy charged particles are compared for a large variety of ions from Helium to Uranium and energies between 1 and 1000 MeV/u which correspond to LET values between 10 and 16000 keV/micrometers. The different cross section for the induction of strand breaks and chromosomal aberrations as well as for inactivation and mutation induction exhibit striking similarities when compared as function of the linear energy transfer (LET). At LET values below 100 keV/micrometers all data points of one specific effect form one single curve as a function of LET, independent of the atomic number of the ion. In this LET range, the biological effects are independ from the particle energy or track structure and depend only on the energy transfer. Therefore, LET is a good parameter in this regime. For LET values greater than 100 keV/micrometers, the curves for the different ions separate from the common curve in order of increasing atomic numbers. In this regime LET is no longer a good parameter and the physical parameters of the formation of particle tracks are important. The similarity of the sigma-LET curves for different endpoints indicates that the 'hook-structure' is produced by physical and chemical effects which occur before the biologically relevant lesions are formed. However, from the existing data of biological effects, it can be concluded that the efficiencies for cell killing are always smaller than those extrapolated from X-ray data on the basis of the energy deposition only. Therefore, cells which are directly hit by an HZE particle are not killed and undergo a finite risk of mutation and transformation.  相似文献   

10.
Early and late effects of accelerated heavy ions (HZE) on the embryonic tissue of Arabidopsis thaliana seeds were investigated seeing that initial cells of the plant eumeristems resemble the original cells of animal and human tissues with continuous cell proliferation. The endpoints measured were lethality and tumorization in the M1-generation for early effects and embryonic lethality in the M2-generation for late effects. The biological endpoints are plotted as functions of the physical parameters of the irradiation i.e. ion fluence (p/cm2), dose (Gray), charge Z and linear energy transfer (LET). The results presented contribute to the estimation of the principles of biological HZE effects and thus may help to develop a unified theory which could explain the whole sequence from physical and chemical reactions to biological responses connected with heavy ion radiation. Additionally, the data of this paper may be used for the discussion of the quality factor for heavy ion irradiation needed for space missions and for HZE-application in radio-therapy by use of accelerators (UNILAC, (SIS/ESR), BEVALAC).  相似文献   

11.
Heritable radiation-induced genetic alterations have long been assumed to be "fixed" within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (approximately l track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of (alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.  相似文献   

12.
For many years we have been interested in understanding the potential carcinogenic effects of cosmic rays. We have studied the oncogenic effects of cosmic rays with accelerator-produced heavy particle radiation and with a cultured mammalian cell system--C3H10T1/2 cells. Our quantitative data obtained with carbon, neon, silicon, and iron particles showed that RBE is both dose and LET dependent for neoplastic cell transformation. RBE is higher at lower dose, and RBE increases with LET up to about 200 keV/micrometer. In nonproliferation confluent cells, heavy-ion induced transformation damage may not be repairable, although a dose modifying factor of about 1.7 was observed for X-ray radiation. Our recent studies with super-heavy high-energy particles, e.g., 960 MeV/U U235 ions (LET = 1900 keV/micrometer), indicate that these ions with a high inactivation cross-section can cause neoplastic cell transformation. The induction of cell transformation by radiation can be modified with various chemicals. We have found that the presence of DMSO (either during or many days after irradiation) decreased the transformation frequency significantly. It is, therefore, potentially possible to reduce the oncogenic effect of cosmic rays in space through some chemical protection.  相似文献   

13.
The cell culture of a Chinese hamster was irradiated on a Serpuchov proton synchrotron at a dose of 0.5-4 Gy and a dose rate of 1 Gy/min and by gamma-irradiation at dose 1-5 Gy and dose rate 1.2-1.4 Gy/min. The effect of radiation on the cell culture was judged from chromosomal aberrations in G2-stage of cell cycle and micronuclear test. The relative biological efficience of the secondary radiation was approximately 3. Modifying effect of caffeine on the cells irradiated by secondary radiation of synchrotron was not observed. In the presence of caffeine the effect of gamma-irradiation practically is increased up to the level observed upon secondary irradiation. This suggests that secondary radiation inhibits the repair of the cytogenetic damage.  相似文献   

14.
The biological effect of heavy ions is best described through the action cross section, as a function of the end-point of interest and the charge and speed of the ion. In track theory this is called the "ion-kill" cross section, for it is the effect produced by a single heavy ion and its delta rays. As with nuclear emulsions the biological track structure passes from the grain count regime to the track width regime to the thindown region with an increase in LET. With biological cells, as with any detector capable of storing sublethal damage, with low LET irradiation the action cross section (in the ion-kill mode) is increasingly obscured by the effect of "gamma-kill", by the influence of overlapping delta rays from neighboring heavy ions. Thus at low LET response is dominated by the gamma-kill mode, so that the RBE approaches 1. The theory requires 4 radiosensitivity parameters for biological detectors, extracted from survival curves at several high LET bombardments passing through the grain count regime, and at high doses. Once these are known the systematic response of biological detectors to all high LET bombardments can be unfolded separating ion kill from gamma kill, predicting the response to a mixed radiation environment, and predicting low dose response even at the level of a single heavy ion. Cell killing parameters are now available for a variety of cell lines. Newly added is a set of parameters for cell transformation.  相似文献   

15.
Estimation of exposure due to environmental and other sources of radiations of high-LET and low-LET is of interest in radiobiology and radiation protection for risk assessment. To account for the differences in effectiveness of different types of radiations various parameters have been used. However, the relative inadequacy of the commonly used parameters, including dose, fluence, linear energy transfer, lineal energy, specific energy and quality factor, has been made manifest by the biological importance of the microscopic track structure and primary modes of interaction. Monte Carlo track structure simulations have been used to calculate the frequency of energy deposition by radiations of high- and low-LET in target sizes similar to DNA and higher order genomic structure. Tracks of monoenergetic heavy ions and electrons were constructed by following the molecular interaction-by-interaction histories of the particles down to 10 eV. Subsequently, geometrical models of these assumed biological targets were randomly exposed to the radiation tracks and the frequency of energy depositions obtained were normalized to unit dose in unit density liquid water (l0(3) kg m-3). From these data and a more sophisticated model of the DNA, absolute yields of both single- and double-strand breaks expressed in number of breaks per dalton per Gray were obtained and compared with the measured yields. The relative biological effectiveness (RBE) for energy depositions in cylindrical targets has been calculated using 100 keV electrons as the reference radiation assuming the electron track-ends contribution is similar to that in 250 kV X-ray or Co60 gamma-ray irradiations.  相似文献   

16.
Biological monitoring of radiation exposure.   总被引:2,自引:0,他引:2  
Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/ monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.  相似文献   

17.
The exposure of astronauts and electronics to the cosmic radiation especially to the particle component pose a major risk to all space flights. Up to now it is not possible to quantify this risk within acceptable limits of accuracy. This uncertainty is not only caused by difficulties in the more or less exact prediction of the incidence of the cosmic radiation but depends also on the problem of the quantification of the radiation field and the correlation of the biological effect. Usually the biological action of a mixed radiation field is estimated as product of the measured dose with an average quality factor, the relative biological efficiency. Because of the large variation in energy and atomic number of the cosmic particles, average values of the quality factor are not precise for risk estimation. A more appropriate way to treat the biological effects of mixed radiation is the concept of particle fluence and action cross section.  相似文献   

18.
In track segment experiments cell survival and chromosome aberrations of mammalian cells have been measured for various heavy ion beams between helium and uranium in the energy range between 0.5 and 960 MeV/u, corresponding to a velocity range of 0.03 to 0.87 C, and an LET spectrum from 10 to 15 000 keV/micrometers. At low LET, the cross section (sigma) for cell killing increases with increasing LET and shows a common curve for all ions regardless of the atomic number. This indicates that in this region the track structure of the different ions is of only a minor influence, and it is rather the total energy transfer, which is important for cell killing. At higher LET values, deviations from a common sigma-LET curve can be observed which indicate a saturation effect. The saturation of the lighter ions occurs at lower LET values than for the heavier ions. These findings are also confirmed by the chromosome data, where the efficiency for the induction of chromosomal aberrations for high LET particles depends on the track structure and is nearly independent of LET. In the heavier beams (Z > or = 10) individual particles cause multiple chromosome breaks in mitotic cells.  相似文献   

19.
Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples.  相似文献   

20.
Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects and macrophage differentiation. These effects are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号