首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the first results of total electron content (TEC) depletions and enhancement associated with ionospheric irregularities in the low latitude region over Kenya. At the low latitude ionosphere the diurnal behavior of scintillation is driven by the formation of large scale equatorial depletions which are formed by post-sunset plasma instabilities via the Rayleigh–Taylor instability near the magnetic equator. Data from the GPS scintillation receiver (GPS-SCINDA) located at the University of Nairobi (36.8°E, 1.27°S) for March 2011 was used in this study. The TEC depletions have been detected from satellite passes along the line of sight of the signal and the detected depletions have good correspondence with the occurrence of scintillation patches. TEC enhancement has been observed and is not correlated with increases in S4 index and consecutive enhancements and depletions in TEC have also been observed which results into scintillation patches related to TEC depletions. The TEC depletions have been interpreted as plasma irregularities and inhomogeneities in the F region caused by plasma instabilities, while TEC enhancement have been interpreted as the manifestation of plasma density enhancements mainly associated with the equatorial ionization anomaly crest over this region. Occurrence of scintillation does happen at and around the ionization anomaly crest over Kenyan region. The presence of high ambient electron densities and large electron density gradients associated with small scale irregularities in the ionization anomaly regions have been linked to the occurrence of scintillation.  相似文献   

2.
The Total Electron Content (TEC) from four locations in the Indian sector namely, Trivandrum (8.47°N, 76.91°E, Geomag.0.63°S, 0.3° dip), Waltair (17.7° N, 83.3°E, Geomag. 6.4°N, 20° dip), Bhopal (23.28°N, 77.34°E, Geomag.14.26°N, 33.2° dip), and Delhi (28.58°N, 77.21°E, Geomag.19.2°N, 43.4° dip) during a low sunspot year of 2004 are used to study the variabilities of the TEC. The day time TEC values are higher over Waltair and Bhopal compared to those at Trivandrum and Delhi. Considerable day-to-day variations in the diurnal values of TEC are observed at the anomaly crest locations. The observed GPS-TEC has been compared with the IRI-2007 model derived TEC considering three different options (IRI-2001, IRI-2001 corrected and Ne-Quick) available in the model for the topside electron density. The TEC derived with Ne-Quick and IRI-01 corrected options show better agreement with GPS-TEC while the TEC from IRI-01 method shows larger deviations. From the correlation analysis carried out between TEC value at 1300 h LT and solar indices parameters namely sunspot number (SSN), F10.7 and EUV, it is observed that the correlation is more during equinoctial months and less during summer months. The correlation coefficients observed over the anomaly locations, Bhopal and Delhi are lower compared to those at Trivandrum and Waltair.  相似文献   

3.
The ionosphere induces a time delay in transionospheric radio signals such as the Global Positioning System (GPS) signal. The Total Electron Content (TEC) is a key parameter in the mitigation of ionospheric effects on transionospheric signals. The delay in GPS signal induced by the ionosphere is proportional to TEC along the path from the GPS satellite to a receiver. The diurnal monthly and seasonal variations of ionospheric electron content were studied during the year 2010, a year of extreme solar minimum (F10.7 = 81 solar flux unit), with data from the GPS receiver and the Digisonde Portable Sounder (DPS) collocated at Ilorin (Geog. Lat. 8.50°N, Long. 4.50°E, dip −7.9°). The diurnal monthly variation shows steady increases in TEC and F2-layer critical frequency (foF2) from pre-dawn minimum to afternoon maximum and then decreases after sunset. TEC show significant seasonal variation during the daytime between 0900 and 1900 UT (LT = UT + 1 h) with a maximum during the March equinox (about 35 TECU) and minimum during the June solstice (about 24 TECU). The GPS-TEC and foF2 values reveal a weak seasonal anomaly and equinoctial asymmetry during the daytime. The variations observed find their explanations in the amount of solar radiation and neutral gas composition. The measured TEC and foF2 values were compared with last two versions of the International Reference Ionosphere (IRI-2007 and IRI-2012) model predictions using the NeQuick and CCIR (International Radio Consultative Committee) options respectively in the model. In general, the two models give foF2 close to the experimental values, whereas significant discrepancies are found in the predictions of TEC from the models especially during the daytime. The error in height dependent thickness parameter, daytime underestimation of equatorial drift and contributions of electrons from altitudes above 2000 km have been suggested as the possible causes.  相似文献   

4.
This paper discusses the monthly and seasonal variation of the total electron content (TEC) and the improvement of performance of the IRI model in estimating TEC over Ethiopia during the solar maximum (2013–2016) phase employing as reference the GPS derived TEC data inferred from four GPS receivers installed in different regions of Ethiopia; Assosa (geog 10.05°N, 34.55°E, Geom. 7.01°N), Ambo (8.97°N, 37.86°E, Geom. 5.42°N), Nazret (8.57°N, 39.29°E, Geom. 4.81°N) and Arba Minch (6.06°N, 37.56°E, Geom. 2.62°N). The results reveal that, in the years 2013–2016, the highest peak GPS-derived diurnal VTEC is observed in the March equinox in 2015 over Arba Minch station. Moreover, both the arithmetic mean GPS-derived and modelled VTEC values, generally, show maximum and minimum values in the equinoctial and June solstice months, respectively in 2014–2015. However, in 2013, the minimum and maximum arithmetic mean GPS-derived values are observed in the March equinox and December solstice, respectively. The results also show that, even though overestimation of the modelled VTEC has been observed on most of the hours, all versions of the model are generally good to estimate both the monthly and seasonal diurnal hourly VTEC values, especially in the early morning hours (00:00–03:00?UT or 03:00–06:00?LT). However, it has also been shown that the IRI 2007 and IRI 2012 versions generally perform best in matching the diurnal GPS derived TEC values as compared to that of the IRI 2016 version. In addition, the IRI 2012 version with IRI2001 option for the topside electron density shows the highest overestimation of the VTEC as compared to the other options. None of the versions of the IRI model are proved to be able to capture the effects of geomagnetic storms.  相似文献   

5.
This paper presents an analysis of the Total Electron Content (TEC) derived from the International GNSS Service receiver (formerly IGS) at Malindi (2.9°S, 40.1°E), Kenya for the periods 2004–2006 during the declining phase of solar cycle 23. The diurnal, monthly and seasonal variations of the TEC are compared with TEC from the latest International Reference Ionosphere model (IRI-2007). The GPS–TEC exhibits features such as an equatorial noon time dip, semi-annual variations, Equatorial Ionization Anomaly and day-to-day variability. The lowest GPS–TEC values are observed near the June solstice and September equinox whereas largest values are observed near the March equinox and December solstice. The mean GPS–TEC values show a minimum at 03:00 UT and a peak value at about 10:00 UT. These results are compared with the TEC derived from IRI-2007 using the NeQuick option for the topside electron density (IRI–TEC). Seasonal mean hourly averages show that IRI-2007 model TEC values are too high for all the seasons. The high prediction primarily occur during daytime hours till around midnight hours local time for all the seasons, with the highest percentage deviation in TEC of more 90% seen in September equinox and lowest percentage deviation in TEC of less than 20% seen in March equinox. Unlike the GPS–TEC, the IRI–TEC does not respond to geomagnetic storms and does overestimate TEC during the recovery phase of the storm. While the modeled and observed data do correlate so well, we note that IRI-2007 model is strongly overestimating the equatorial ion fountain effect during the descending phase of solar cycle, and this could be the reason for the very high TEC estimations.  相似文献   

6.
利用位于赤道异常区的深圳站(22.59°N,113.97°E)2011年1月至2012年12月及2015年1月至2015年12月监测到的GPS-TEC数据,统计分析华南地区电离层闪烁与TEC耗空同时出现、电离层闪烁单独出现和TEC耗空单独出现3种现象的时间和空间分布特性.结果表明:这3种现象均主要发生在春秋季节;闪烁与TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现分别主要发生在纬度为19°-23°N,21°-24°N和24°-26°N的空间区域.探测到闪烁和TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现的时间分别主要分布在20:00LT-22:00LT,21:00LT-23:00LT和22:30LT-23:30LT.闪烁与TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现3种现象的时间和空间分布特性对应了华南地区不规则体和赤道等离子体泡(EPBs)从产生到消失的演变过程.  相似文献   

7.
The variation of TEC data at Wuhan station (geographic coordinate: 30.5°N, 114.4°E; geomagnetic coordinate: 19.2°N, 183.8°E) at crest of equatorial anomaly in China from January 1997 to December 2007 were analyzed. Variability with solar activity, annual, semiannual, diurnal and seasonal variation were also analyzed. The MSIS00 model and ISR model were used to analyze the possible mechanisms of the variabilities found in the results. The TEC data in 1997 and 2001 deduced from another crest station Xiamen (geographic coordinate: 24.4°N, 118.1°E; geomagnetic coordinate: 13.2°N, 187.4°E) were used to contrast. Analysis results show that long-term variations of TEC at Xiamen station are mainly controlled by the variations of solar activities. Typical diurnal variation behaves as a minimum of the TEC in the pre-dawn hours around 05:00–06:00LT and a maximum on the afternoon hours around 13:00–15:00LT. Some features like the semiannual anomaly and winter anomaly in TEC have been reported. The anomaly may be the result of common action of the electric field over the magnetic equatorial and the [O/N2] at the crest station.  相似文献   

8.
The occurrence of ionospheric scintillations with S4 ? 0.2 was studied using GPS measurements at Guilin, China (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities.  相似文献   

9.
Results pertaining to the response of the low latitude ionosphere to a major geomagnetic storm that occurred on 24 August 2005 are presented. The dual frequency GPS data have been analyzed to retrieve vertical total electron content at two Indian low latitude stations (IGS stations) Hyderabad (Geographic latitude 17°20′N, Geographic longitude 78°30′E, Geomagnetic latitude 8.65°N) and Bangalore (Geographic latitude 12°58′N, Geographic longitude 77°33′E, Geomagnetic latitude 4.58°N). These results show variation of GPS derived total electron content (TEC) due to geomagnetic storm effect, local low latitude electrodynamics response to penetration of high latitude convection electric field and effect of modified fountain effect on GPS–TEC in low latitude zone.  相似文献   

10.
The ionospheric scintillation and TEC (Total Electron Content) variations are studied using GPS (Global Positioning System) measurements at an Indian low latitude station Surat (21.16°N, 72.78°E; Geomagnetic: 12.90°N, 147.35°E), situated near the northern crest of the equatorial anomaly region. The results are presented for data collected during the initial phase of current rising solar activity (low to moderate solar activity) period between January 2009 and December 2011. The results show that within a total number of 656 night-time scintillation events, 340 events are observed with TEC depletions, Rate of change of TEC (ROT) fluctuations and enhancement of Rate of change of TEC Index (ROTI). A comparison of night-time scintillation events from the considered period reveal strong correlation amongst the duration of scintillation activity in S4 index, TEC depletion, ROT fluctuations and ROTI enhancement in the year 2011, followed by the year 2010 and least in 2009. The statistical analyses of scintillation activity with enhancement of ROTI also show that about 70–96% scintillation activity took place in equinox and winter months. Moreover, from a nocturnal variation in occurrence of scintillation with (S4 ? 0.2) and enhancement of ROTI with (ROTI ? 0.5), a general trend of higher occurrence in pre-midnight hours of equinox and winter seasons is observed in both indices during the year 2011 and 2010, while no significant trend is observed in the year 2009. The results suggest the presence of F-region ionospheric irregularities with scale sizes of few kilometers and few hundred meters over Surat and are found to be influenced by solar and magnetic activity.  相似文献   

11.
Total electron content (TEC) over Tucumán (26.9°S, 294.6°W) measured with Faraday technique during the high solar activity year 1982, is used to check IRI 2001 TEC predictions at the southern crest of the equatorial anomaly region. Comparisons with IRI 90 are also made. The results show that in general IRI overestimates TEC values around the daily minimum and underestimates it the remaining hours. Better predictions are obtained using ground ionosonde measurements as input coefficients in the IRI model. The results suggest that for hours of maximum TEC values the electron density profile is broader than that assumed by the model. The main reason for the disagreement would be the IRI shape of the electron density profile.  相似文献   

12.
The temporal and seasonal variations of Total Electron Content (TEC) are studied at Agra (Geographic Lat. 27.17°N, Long. 78.89°E, Dip: 41.4°), India, which is in the equatorial anomaly region, for a period of 12 months from 01 January to 31 December, 2007 using a Global Positioning System (GPS) receiver. The mean TEC values show a minimum at 0500 h LT (LT = UT + 5.5 h) and a peak value at about 1400 h LT. The lowest TEC values are observed in winter whereas largest values are observed in equinox and summer. Anomalous variations are found during the period of magnetic disturbances. These results are compared with the TEC derived from IRI-2007 using three different options of topside electron density, NeQuick, IRI01-corr, and IRI-2001. A good agreement is found between the TEC obtained at Agra and those derived from IRI models.  相似文献   

13.
We investigate the ionospheric total electron content (TEC) anomalies occurred in the Qinghai-Tibet region before three large earthquakes (M > 7.0). The temporal and spatial TEC variations were used to detect the ionospheric possible precursors of these earthquakes. We identified two TEC enhancements in the afternoon local time 9 days and 2–3 days before each earthquake, between which a TEC decrement occurred 3–6 days before earthquakes. These anomalies happened in the area of about 30° in latitude and the maximum is localized equatorward from the epicenters. These TEC anomalies can be found in all three earthquakes regardless the geomagnetic conditions. The features of these anomalies have something in common and may have differences from those caused by geomagnetic storms. Our results suggest that these ionospheric TEC perturbations may be precursors of the large earthquakes.  相似文献   

14.
Observations of ionospheric vertical total electron content (vTEC) from European ground-based Global Navigation Satellite Systems (GNSS) receivers during the period January 2008–January 2010 are used to investigate, for the first time, vTEC sensitivity to weak geomagnetic disturbances under extreme solar minimum conditions. This study shows a significant number of events for the period in question, all of which exhibited some form of exceptionally large values of vTEC during small-magnitude geomagnetic disturbances. To illustrate our point on the importance of vTEC enhancements during the extreme solar minimum and its relevance for the current GNSS and future Galileo applications, we present in this paper the results associated with two significant events that both occurred in equinoctial months. The 10–12 October 2009 event of anomalous TEC enhancement at two distant mid-latitude locations HERS (0.3 E; 50.9 N) and NICO (33.4 E, 35.1 N) is discussed in the context of strong vTEC variations during the well established ionospheric storm on 11 October 2008. We conclude with a short summary of the new findings and their consequences on ionospheric monitoring and modelling for operational communication and navigation systems.  相似文献   

15.
The effects of physical events on the ionosphere structure is an important field of study, especially for navigation and radio communication. The paper presents the spatio-temporal ionospheric TEC response to the recent annular solar eclipse on June 21, 2020, which spans across two continents, Africa and Asia, and 14 countries. This eclipse took place on the same day as the June Solstice. The Global Navigation Satellite System (GNSS) based TEC data of the Global Ionosphere Maps (GIMs), 9 International GNSS Service (IGS) stations and FORMOSAT-7/COSMIC-2 (F7/C2) were utilized to analyze TEC response during the eclipse. The phases of the TEC time series were determined by taking the difference of the observed TEC values on eclipse day from the previous 5-day median TEC values. The results showed clear depletions in the TEC time series on June 21. These decreases were between 1 and 9 TECU (15–60%) depending on the location of IGS stations. The depletions are relatively higher at the stations close to the path of annular eclipse than those farther away. Furthermore, a reduction of about ?10 TECU in the form of an equatorial plasma bubble (EPB) was observed in GIMs at ~20° away from the equator towards northpole, between 08:00–11:00 UT where its maximum phase is located in southeast Japan. Additionally, an overall depletion of ~10% was observed in F7/C2 derived TEC at an altitude of 240 km (hmF2) in all regions affected by the solar eclipse, whereas, significant TEC fluctuations between the altitudes of 100 km ? 140 km were analyzed using the Savitzky-Golay smoothing filter. To prove TEC depletions are not caused by space weather, the variation of the sunspot number (SSN), solar wind (VSW), disturbance storm-time (Dst), and Kp indices were investigated from 16th to 22nd June. The quiet space weather before and during the solar eclipse proved that the observed depletions in the TEC time series and profiles were caused by the annular solar eclipse.  相似文献   

16.
GPS-derived vertical TEC recorded at Xiamen (24.5°N, 118.1°E, geomagnetic latitude 13.2°N), China, during year 2006 is analyzed for the first time and compared to that predicted by ionosphere model SPIM recommend by ISO. A manifest seasonal anomaly is found with the high value during equinoctial season and low value during summer and winter season. Relative standard deviation for VTEC shows high value at around midnight and before sunrise. The correlation analysis exhibits that the variation of VTEC has a very weak relation with geomagnetic and solar activities (Dst, AP, SSN and F10.7). Comparative results reveal that the SPIM overestimates the observed VTEC at most of the time.  相似文献   

17.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   

18.
Data from the archive of the International GNSS Services (IGS) were used to study the seasonal variations of Total Electron Content (TEC) over three stations located at different latitudes in the southern hemisphere during the geomagnetic storms of 11 January, 6 April, 8 June, and 13 October 2000, representing storms that occurred in summer, autumn equinox, winter and spring equinox, respectively. The percentage TEC deviation with respect to reference values differs substantially from season to season. A strong seasonal anomaly and clear equinoctial asymmetry in TEC response to the storms were observed. Weak and short-lived positive TEC deviations as well as strong and long-lasting negative trends were observed in summer storm during the main and recovery phases respectively over the high and low latitudes whereas in winter storm, the highest positive TEC deviations was recorded during the main phase over the entire latitudes. TEC enhancement dominated all the stations during the autumn (March) equinox storm while TEC depletion was majorly observed during the spring (September) equinox. All these variations find their explanations in the thermospheric composition change and circulation. Future work with direct or modeled measurement of atomic Oxygen to molecular Nitrogen ratio (O/N2), large number of storms and other possible factors such as variations in storm’s intensity and local time dependence of the storm onset is expected to validate the observations in this study.  相似文献   

19.
The amplitude scintillations data recorded at 244 MHz from the geostationary satellite, FLEETSAT (73°E) at a low latitude station, Waltair (17.7°N, 83.3°E) during the ten year period of high to low solar activity from 2001 to 2010 is considered to study the occurrence characteristics of the VHF scintillations. A close association between the intense scintillations on VHF signals during pre-midnight hours, associated with range type of spread-F on ionograms and a relatively weak and slow fading scintillations during post-midnight hours associated with frequency type of spread-F is observed during the relatively high sunspot years from 2001 to 2004, whereas during the low sunspot years from 2005 to 2010 the scintillation activity as well as spread-F activity are found to be minimum. During both the high and low sunspot years, it is observed that the maximum scintillation activity occurs during equinoctial months followed by winter with the minimum occurrence during summer months. The annual mean percentage occurrence of scintillations is found to be clearly associated with the variations in the annual mean sunspot number. The nocturnal variations in the occurrence of scintillations show the onset of scintillation activity starts from 19:00 h LT with maximum of occurrence around 21:00 h LT. A clear semiannual variation in the occurrence of scintillations is observed during pre-midnight hours with two peaks in equinoctial months of March/April and September/October. The number of scintillation patches observed is found to be more during pre-midnight hours compared to those during post-midnight hours. The most probable scintillation patch duration lies around 30 min. Further, it is also found that the number of scintillation patches with durations of 60 min and more decreases with the increase in the patch duration. It is also observed in general that the scintillation activity is inhibited during geomagnetic disturbed days.  相似文献   

20.
Employing a dual frequency GPS-receiver, ionospheric total electron (TEC) measurements have been in progress at Agra station in India (Geograph. lat. 27.2°N, long. 78°E) since 1 April 2006. In this paper, the TEC data have been analyzed for a period of one month from 1 April-1 May 2013 to examine the effect of multiple earthquakes, some of which occurred on the same day of 16 April 2013, and others occurred in the same month of April, 2013 in India and neighboring countries. We process the data using quartile and epoch analysis based statistical techniques and show that out of all the earthquakes, the one of the largest magnitude (M = 7.8) that occurred on Pakistan-Iran border caused anomalous enhancements and depletions in TEC 1–9 days before the occurrence of main sock. The E × B drift mechanism is suggested for the anomalies to occur in which the seismogenic electric field E is generated in a process suggested by Pulinets (2004).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号