首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During 2004 and 2005 measurements of mesospheric/lower thermospheric (80–100 km) winds have been carried out in Germany using three different ground-based systems, namely a meteor radar (36.2 MHz) at the Collm Observatory (51.3°N, 13°E), a MF radar (3.18 MHz) at Juliusruh (54.6°N, 13.4°E) and the LF D1 measurements using a transmitter (177 kHz) at Zehlendorf near Berlin and receivers at Collm with the reflection point at 52.1°N, 13.2°E. This provides the possibility of comparing the results of different radar systems in nearly the same measuring volume. Meteor radar winds are generally stronger than the winds observed by MF and especially by LF radars. This difference is small near 80 km but increases with height. The difference between meteor radar and medium frequency radar winds is larger during winter than during summer, which might indicate an indirect influence of gravity waves on spaced antenna measurements.  相似文献   

2.
VHF radar observations of the mesosphere generally reveal that the structure of turbulence is intermittent in space and time. Some examples of such turbulence layers and the concurrent gravity wave oscillations, observed in the low latitude mesosphere over the Arecibo Observatory/Puerto Rico are discussed. This turbulence structures which are intermittent on short time scales but persistently recur over periods of many hours at almost the same height are evidently not related to the simultaneously occurring short period gravity waves. These kinds of persistent turbulence structures are assumed to be related to very long period (inertia-) gravity waves, where instability takes place only by the wave induced shear in a narrow critical level. However, the short period gravity waves occasionally break into turbulence by overturning and convective instability. These interpretations offer a way to understand the generation mechanisms of the different kinds of turbulence structures, namely blobs, sheets and layers, which were reported in the early days of mesospheric VHF radar observations.  相似文献   

3.
Gravity waves with periods close to the Brunt-V?is?l? period of the upper troposphere are often observed at mesopause altitudes as short period, quasi-monochromatic waves. The assumption that these short period waves originate in the troposphere may be problematic because their upward propagation to the mesosphere and lower thermosphere region could be significantly impeded due to an extended region of strong evanescence above the stratopause. To reconcile this apparent paradox, an alternative explanation is proposed in this paper. The inclusion of mean winds and their vertical shears is sufficient to allow certain short period waves to remain internal above the stratopause and to propagate efficiently to higher altitudes. A time-dependent numerical model is used to demonstrate the feasibility of this and to determine the circumstances under which the mesospheric wind shears play a role in the removal and directional filtering of short period gravity waves. Finally this paper concludes that the combination of the height-dependent mean winds and the mean temperature structure probably explains the existence of short period, quasi-monochromatic structures observed in airglow images of mesopause region.   相似文献   

4.
Temperature observations at 20–90 km height and 5°N–15°N during the period of December 1992–March 1993 from the WINDII and MLS experiments on the UARS satellite are analysed together with MF radar winds and UKMO assimilated fields of temperature and zonal and meridional winds. The correlation between the different datasets at the tropics and zonal mean wind data at mid latitudes is examined for period February–March 1993, when series of stratospheric warming events were observed at middle and high latitudes. Wavelet analysis is applied to investigate coupling between stationary and travelling planetary waves in the stratosphere and the upper mesosphere. Planetary waves m = 1 with periods of 4–7 days, 8–12 days and 13–18 days are found to dominate the period. Westward 7- and 16–18 day waves at the tropics appear enhanced by stationary planetary waves during sudden stratospheric warming events.  相似文献   

5.
The sampling interval of sodium dayglow observations was progressively reduced from one hour to two minutes for investigation of mesospheric dynamics, especially for daytime detection of the periods of gravity waves in the mesosphere and the lower thermosphere. The observations were analysed by usual power spectrum technique. The prominent periods, observed for the present, vary between 5 to 27 minutes in general agreement with results obtained by other techniques.  相似文献   

6.
To investigate the Mesosphere and Lower Thermosphere (MLT) region, several ground-based instruments called SATI (Spectral Airglow Temperature Imager) were designed and built to measure airglow emission and temperature in the upper mesosphere. One SATI instrument was installed at Resolute Bay (74.7°N, 94.9°W) and has monitored the polar MLT region since November, 2001. In October 2007 another SATI instrument was installed at Eureka (80.0°N, 86.3°W) at the Polar Environment Atmospheric Research Laboratory (PEARL) as part of the Canadian Network for the Detection of Atmospheric Change (CANDAC) project. SATI is a spatial scanning Fabry–Perot spectrometer measuring column emission rates for several rotational lines of OH and O2 airglow at 87 and 94 km height. The rotational temperatures are inferred from the ratios of these lines. The measurements are divided into 12 sectors with an annular field of view. The phase differences between the sectors yield information on the horizontal atmospheric wave direction and wavelength. Horizontal perturbations of 2–8 h period have correlatively been observed and investigated at both locations. Short-periodic oscillations identified as gravity waves with periods between 2 and 8 h propagate in southward and eastward directions, but in opposite directions in some cases. The wave propagation characteristics are often different at the two locations; the relationship with the lower mean wind is considered.  相似文献   

7.
At mesospheric heights, VHF radar measurements reveal strong signal power bursts which have the same period as simultaneously observed short-period velocity oscillations. Both the power bursts and the velocity oscillations occur in layers of maximum vertical wind shear generated by tidal or long-period gravity waves with apparent vertical wavelengths of the order of 10 km. A comparison with similar power bursts measured in the troposphere during a jet stream passage leads to the conclusion that the short-period velocity oscillations are due to a Kelvin-Helmholtz instability. This instability in turn generates superadiabatic lapse rates so that strong turbulence can occur which produces the observed signal power bursts.  相似文献   

8.
We have used the technique suggested by Hocking [Hocking, W. A new approach to momentum flux determinations using SKiYMET meteor radars. Ann. Geophys. 23, 2005.] to derive short period wind variances in the 80–100 km region from meteor radar data. We find that these fluctuating winds, assumed to correspond to gravity waves and turbulence, are closely correlated with the vertical shear of the horizontal tidal winds. This close correlation suggests that in situ wind shear may be a major source of gravity waves and turbulence in the MLT. If this is the case, gravity waves generated in the troposphere and propagating up to the MLT region, generally assumed to constitute an important influence on the climatology of the region, may be a less important source of energy and momentum in the 80–100 km region than has been hitherto believed.  相似文献   

9.
The period January–February 2008 was characterized by four Sudden Stratospheric Warmings (SSWs) in the Northern Hemisphere, of which the last warming, at the end of February 2008, was a major warming. A significant decrease in mesospheric water vapour (H2O) of more than 2 ppmv (∼40%) was observed by the ground-based microwave (GBMW) radiometer in Seoul, S. Korea [37.3°N, 126.3°E] during the major SSW. A comparison with ground-based mesospheric H2O observations from the mid-latitude station in Bern [46.9°N, 7°E] revealed an anticorrelation in the mesospheric H2O data during the major SSW. In addition, prior to the major warming, strong periodic fluctuations were recorded in the Aura MLS vertical temperature distribution between 15 and 0.05 hPa at Seoul. The mesospheric temperature oscillation was found to have a period of ∼10–14 days with a persistency of 3–4 cycles.  相似文献   

10.
The digital ionosonde located in Bhopal (23.2°N, 77.2°E), India has been used to investigate the responses of the Es layer in the equatorial ionization anomaly (EIA) crest to the total solar eclipse (TSE) of July 22, 2009. Results show the presence of intense Es layer during and after the eclipse period. The gravity waves induced by the solar eclipse propagated upward in the Es layer and produced the periodic disturbance. The results of the wavelet analysis display the presence of dominant oscillation of about 24–32, 16–20 and 8 min. The appearance of intense sporadic-E concomitantly with the signatures of gravity wave suggests that the wind shear introduced by the solar eclipse induced gravity wave might be the plausible mechanism behind the intensification of Es-layer ionization.  相似文献   

11.
Ground-based radars have proved to be powerful instruments for studying dynamical processes in the middle atmosphere. They have been used successfully in the last few years during Pre-MAP and MAP projects. This paper briefly reviews the following ground-based radar methods: the new MST radar technique for remote sensing of the mesosphere, stratosphere and troposphere, and the well known techniques for mesospheric measurements such as the ionospheric drift experiment, the meteor radar and the MF radar experiments. A survey of observational results obtained with the various techniques is presented. Particular emphasis is directed to winds and waves as well as their interaction, all of which play an important role in the structure and dynamics of the middle atmosphere.  相似文献   

12.
We summarize two years of Mesosphere Lower Thermosphere Photometer (MLTP) operation of mesospheric OH and O2 emission monitoring. The deduced mesospheric OH and O2 temperatures show large variability. Nightly temperature variations over Gadanki (13.5°N, 79.2°E) are dominated by the short period wave features, while tidal amplitudes are relatively small. Our measurements are the first to report a long period seasonal variation at two upper mesospheric altitudes simultaneously over the Indian sector. Our observations reveal the presence of a dominant semi-annual oscillation (∼6 months periodicity) together with a shorter period (∼2.5  months periodicity) oscillation in both OH and O2 data.  相似文献   

13.
Vertical profiles of ozone have been measured at balloon altitudes. Our purpose is to examine the character of vertical wavenumber spectra of ozone fluctuations, to assess the possible roles of gravity wave field in ozone fluctuations, and to determine dominant vertical wavelengths of ozone spectra. Vertical wavenumber spectra of 12 ozone fluctuations obtained during June–August 2003 are presented. Results indicate that mean spectral slopes in the wavenumber range from 4.69 × 10−4 to 2.50 × 10−3 cyc/m are about −2.91 in the troposphere and −2.87 in the lower stratosphere, which is close to the slope of −3 predicted by current gravity wave saturation models. The consistency of the observed spectral slopes with the value of −3 predicted by current gravity wave saturation models suggests that the observed ozone fluctuations are due primarily to atmospheric gravity waves. At m = 1/(1000 m) the mean spectral amplitude is over 30 times larger in the lower stratosphere than in the troposphere. Mean vertical wavenumber spectra in area-preserving form reveal dominant vertical wavelengths of ∼2.6 km in the troposphere and ∼2.7 km in the lower stratosphere, which is consistent with the values varying between 1.5 and 3.0 km estimated from the velocity field and temperature field at these heights.  相似文献   

14.
Westward ionospheric convective flows around midnight are frequently observed at mid-latitudes. They can be generated by so-called disturbance dynamo mechanisms working mainly in the mid-latitudes. To understand the influence of disturbance dynamo effects in the mid-latitudes, we studied the latitudinal distribution of westward flows in association with several kinds of geomagnetic disturbances using the SuperDARN Hokkaido radar. This radar creates high temporal resolution (1 s to 2 min), two-dimensional observations measuring the line-of-sight velocities of ionospheric plasma irregularities, which can be regarded as line-of-sight velocities of ionospheric convection in the mid-latitude region from 40° to 50°. This region could not be monitored using preexisting SuperDARN radars. In this study, we used ionospheric echo data obtained by the SuperDARN Hokkaido radar over 5 years (December 2006 to November 2011). We identified westward flows around midnight at about 40° to 55° geomagnetic latitude. Additionally, the data showed that the westward flow around midnight intensified under high geomagnetic activity (high Kp). This suggests that the disturbance dynamo could affect the mid-latitude ionospheric convection. We performed Superposed Epoch Analysis (SEA) to study the influences from the geomagnetic disturbances on mid-latitude ionospheric convection. We found no obvious influence during major storms (minimum Dst below −60 nT). SEA was also used to study the temporal and latitudinal dependence on the influences from substorms. From analysis of 36 events of AL-defined substorms, we saw that the influence of substorms lasted from 5 to 20 h after the onset between 44° and 53° geomagnetic latitude. The westward flow at mid-latitude grew to a maximum at 12 h after the geomagnetic substorm onset. This is consistent with the results of past numerical simulation studies of the disturbance dynamo effects.  相似文献   

15.
A new convective gravity wave source spectrum parameterization has been implemented in the Whole Atmosphere Community Climate Model version 2 (WACCM2). This parameterization specifies the momentum flux phase speed spectrum of gravity waves in the Tropics based on the properties of underlying convection; Hence, this parameterization provides realistic global estimates of gravity wave activity. In this paper, we show the estimated gravity wave phase speed spectra in the Tropics from a WACCM2 simulation, at the source level and at 85 km. Spatial distribution of gravity wave activity at 85 km is also presented. Subsequently, we discuss the factors that are primarily responsible for the estimated differences in gravity wave distribution across phase speeds with latitude and asymmetries in direction of gravity wave propagation in the mesosphere. We also examine which of the model assumptions can lead to uncertainties in our estimates of mesospheric gravity wave activity and we discuss how these assumptions provide challenges for comparison with observations of gravity waves in the mesosphere.  相似文献   

16.
Coordinated mesospheric night-airglow measurements have been carried out from two stations, Gadanki (13.5° N, 79.2° E) and Allahabad (25.5° N, 81.9° E), India during April 2009 to study the common gravity wave features. With two nights of coordinated measurements we find some of the wave periodicities to be similar at the two locations. Simultaneous OH and O2 intensity measurements over Gadanki reveal these features to be upward propagating gravity waves while the coordinated OH intensity measurements of similar waves from Allahabad show the large spatial extent of these waves.  相似文献   

17.
A lidar has been operated in São José dos Campos, Brazil (23.2°S, 45.8°W) since 1972, mainly dedicated to the study of mesospheric sodium at the 589 nm resonant line. The molecular Rayleigh scattering can also be used provided we limit the height to ∼75 km where the sodium scattering begins. Nevertheless, the weak signal obtained only permits the determination of density and temperature profiles by accumulating a large number of shots giving only nocturnal average profiles. Temporal variations in density and temperature on the scale of hours can however, be obtained by performing a superposed epoch analysis for a given time interval and covering a period of several days. In this way we obtained hourly mean profiles grouped by months, seasons and overall, with data acquired from 1993 to 2004. The difference between the hourly temperatures and the nocturnal means shows for some months, with enough data coverage, downward propagating structures that apparently have tidal origin. The seasonal averages show a recurrent feature with high temperatures before and low temperatures after midnight above 50 km. Some similarity is found with the GSWM model, but the observed temperature amplitudes are twice of that for the model.  相似文献   

18.
武汉中层大气中频雷达及其初步探测结果   总被引:7,自引:9,他引:7  
首先简要地讨论了武汉中频雷达观测原理和设备的组成,该雷达测量60-100km高度的大气风场和电子密度,风场采用分布天线测量技术和全相关分析方法得到,电子密度通过微分吸收和微分相位技术获得,初步观测结果表明:(1)武汉上空冬季60-100km高度的纬向风多为西风,风速为30-50m/s,经向风速为10-20m/s,垂直风速较小,一般在5m/s以内,(2)60-100km高度范围的大气风场和电子密度均有明显的日变化,风场在某些时段和高度区间有较强的风剪切出现。(3)80km以上高度大气的风场和电子密度存在较明显的扰动现象,它可能与大气波动过程有关。  相似文献   

19.
Scale height, H, estimates are calculated from the decrease/increase of ionospheric virtual reflection heights of low-frequency (LF) radio waves at oblique incidence in suitably defined morning intervals around sunrise during winter months. The day-to-day variations of H qualitatively agree with daily mean temperature variations around 90 km from meteor radar measurements. Since mesospheric long-period temperature variations are generally accepted to be the signature of atmospheric planetary waves, this shows that LF reflection height measurements can be used for monitoring the dynamics of the upper middle atmosphere. The long-term variations of monthly mean H estimates have also been analysed. There is no significant trend, which is in agreement with other measurements of mesopause region temperature trends.  相似文献   

20.
Mesospheric frontal-type gravity waves are an uncommon type of wave disturbance that occurs in the mesospheric OH, Na, O2, and O(1S) nightglow. They are understood to be the result of gravity waves exhibiting various degrees of non-linear behavior. Despite their similar appearance in all-sky images, careful analysis reveals that there are at least two distinct types of frontal wave disturbances, each with completely different consequences in terms of vertical momentum transport and deposition. Therefore, a correct identification is important in order to characterize their propagation modes. In this report we present the frontal gravity wave activity that occurred during a twelve-month period at Millstone Hill (42.6°N, 172.5°W), a mid-latitude site, to illustrate their range of behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号