首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
We study the temporal evolution of the power rigidity spectrum of the first (27 days) and the second (14 days) harmonics of the 27-day variation of the galactic cosmic ray intensity measured by neutron monitors in the period of 1965–2002. The rigidity spectrum of these variations can be approximated by a power law. We show the rigidity spectra of the first and the second harmonics of the 27-day variation of the galactic cosmic ray intensity have similar time profiles. These spectra are hard (γ ≈ 0.5 ± 0.1) and soft (γ ≈ 1.1 ± 0.2) during solar maximum and minimum activity, respectively. We ascribe this to the alternation of the sizes of the modulation regions responsible for the 27-day variation of the galactic cosmic ray intensity in different epochs of solar activity. Especially, the average radial sizes of the modulation regions of the 27-day variation and the heliolatitudinal extension of the heliolongitudinal asymmetry are smaller during solar minimum than during solar maximum. We show also, that the temporal changes of the power rigidity spectra of the first and the second harmonics of the 27-day variation of the galactic cosmic ray intensity are in a negative correlation with the changes of the rigidity spectrum of the corresponding 11-year variation.  相似文献   

2.
Observed galactic cosmic ray intensity can be subjected to a transient decrease. These so-called Forbush decreases are driven by coronal mass ejection induced shockwaves in the heliosphere. By combining in situ measurements by space borne instruments with ground-based cosmic ray observations, we investigate the relationship between solar energetic particle flux, various solar activity indices, and intensity measurements of cosmic rays during such an event. We present cross-correlation study done using proton flux data from the SOHO/ERNE instrument, as well as data collected during some of the strongest Forbush decreases over the last two completed solar cycles by the network of neutron monitor detectors and different solar observatories. We have demonstrated connection between the shape of solar energetic particles fluence spectra and selected coronal mass ejection and Forbush decrease parameters, indicating that power exponents used to model these fluence spectra could be valuable new parameters in similar analysis of mentioned phenomena. They appear to be better predictor variables of Forbush decrease magnitude in interplanetary magnetic field than coronal mass ejection velocities.  相似文献   

3.
Recently it has been suggested that there exist specific changes in the cosmic ray intensity and some solar and geomagnetic parameters during the days, preceding the hurricane appearances over the North Atlantic Ocean. To understand better these phenomena, data for all hurricanes born not only over the Atlantic but also over the Pacific waters in the last 55 years that hit the Mexican borders were elaborated. As basic hurricane parameters the maximum rotational velocity and the estimated total energy were used. To avoid any interference all hurricanes, overlapping the preceding ones with more than 20 days were not included. Then the behavior of the cosmic ray (CR) intensity, the sunspot (SS) numbers, and the geomagnetic parameters (AP) and (KP) in 35 days prior and 20 days after the cyclone start were investigated. The CR, SS, AP and KP showed much more intensive disturbances in the periods preceding and following the hurricane appearance. For SS this disturbance gradually increase with the hurricane strength. A characteristic peak in the CR intensity appears before the hurricane start. But its place varies between 5 and 20 days before that start. Specific changes were observed in the SS. For major hurricanes they begins sometimes more than 20 days in advance. The AP and the KP show series of bursts, spread over the whole period of 30 preceding days. The obtained results from the performed correlational analysis are enough interesting to motivate a further statistical analysis with more precise techniques: in particular a common periodicity of 30 years found in the number of tropical storms landing into Mexico, the averaged rotational wind velocity and the ACE must be studied in connection with the solar Hale cycle. Using coherence wavelet spectral analysis we present a comparative study between one terrestrial and one cosmophysical phenomena that presumable influence hurricanes development: African dust outbreaks versus cosmic rays for all North Atlantic tropical cyclones. It is shown that the cosmophysical influence cannot be considered as a negligible effect.  相似文献   

4.
We develop a three-dimensional (3-D) model of the 27-day variation of galactic cosmic-ray (GCR) intensity with a spatial variation of the solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving the corresponding Maxwell equations with a variable solar wind speed, which reproduces in situ observed experimental data for the time interval to be analyzed (24 August 2007–28 February 2008). We perform model calculations for the GCR intensity using the variable solar wind and the corresponding magnetic field. Results are compatible with experimental data; the correlation coefficient between our model predictions and observed 27-day GCR variation is 0.80 ± 0.05.  相似文献   

5.
Long-term changes of the Arctic frontal zone characteristics near the south-eastern coasts of Greenland were considered, the NCEP/NCAR reanalysis data being used. It was found that in the cold half of the year the temperature gradients in the layer 1000–500 hPa in the region under study reveal strong ∼10-yr and ∼22-yr periodicities that seem to be related to solar activity cycles. The results obtained suggest the influence of solar activity and cosmic ray variations on the structure of the temperature field of the troposphere resulting in the changes of the temperature contrasts in the Arctic frontal zone that, in turn, may affect the intensity of cyclogenesis at middle latitudes. The detected effects seem to indicate an important part of frontal zones in the mechanism of solar activity and cosmic ray variation influence on the development of extratropical baric systems. It is suggested that the variations of the temperature gradients revealed in the Arctic frontal zone are due to the radiative forcing of cloudiness changes which may be associated with geomagnetic activity and cosmic ray variations.  相似文献   

6.
Observations of galactic cosmic rays (GCRs) from the two Voyager spacecraft inside the heliosheath indicate significant differences between them, suggesting that in addition to a possible global asymmetry in the north–south dimensions (meridional plane) of the heliosphere, it is also possible that different modulation (turbulence) conditions could exist between the two hemispheres of the heliosphere. We focus on illustrating the effects on GCR Carbon of asymmetrical modulation conditions combined with a heliosheath thickness that has a significant dependence on heliolatitude. To reflect different modulation conditions between the two heliospheric hemispheres in our numerical model, the enhancement of both polar and radial perpendicular diffusion off the ecliptic plane is assumed to differ from heliographic pole to pole. The computed radial GCR intensities at polar angles of 55° (approximating the Voyager 1 direction) and 125° (approximating the Voyager 2 direction) are compared at different energies and for both particle drift cycles. This is done in the context of illustrating how different values of the enhancement of both polar and radial perpendicular diffusion between the two hemispheres contribute to causing differences in radial intensities during solar minimum and moderate maximum conditions. We find that in the A > 0 cycle these differences between 55° and 125° change both quantitatively and qualitatively for the assumed asymmetrical modulation condition as reflected by polar diffusion, while in the A < 0 cycle, minute quantitative differences are obtained. However, when both polar and radial perpendicular diffusion have significant latitude dependences, major differences in radial intensities between the two polar angles are obtained in both polarity cycles. Furthermore, significant differences in radial intensity gradients obtained in the heliosheath at lower energies may suggest that the solar wind turbulence at and beyond the solar wind termination shock must have a larger latitudinal dependence.  相似文献   

7.
A high-time resolution Neutron Monitor Database (NMDB) has started to be realized in the frame of the Seventh Framework Programme of the European Commission. This database will include cosmic ray data from at least 18 neutron monitors distributed around the world and operated in real-time. The implementation of the NMDB will provide the opportunity for several research applications most of which will be realized in real-time mode. An important one will be the establishment of an Alert signal when dangerous solar cosmic ray particles are heading to the Earth, resulting into ground level enhancements effects registered by neutron monitors. Furthermore, on the basis of these events analysis, the mapping of all ground level enhancement features in near real-time mode will provide an overall picture of these phenomena and will be used as an input for the calculation of the ionization of the atmosphere. The latter will be useful together with other contributions to radiation dose calculations within the atmosphere at several altitudes and will reveal the absorbed doses during flights. Moreover, special algorithms for anisotropy and pitch angle distribution of solar cosmic rays, which have been developed over the years, will also be set online offering the advantage to give information about the conditions of the interplanetary space. All of the applications will serve the needs of the modern world which relies at space environment and will use the extensive network of neutron monitors as a multi-directional spectrographic detector. On top of which, the decreases of the cosmic ray intensity – known as Forbush decreases – will also be analyzed and a number of important parameters such as galactic cosmic ray anisotropy will be made available to the users of NMDB. A part of the NMDB project is also dedicated to the creation of a public outreach website with the scope to inform about cosmic rays and their possible effects on humans, technological systems and space-terrestrial environment. Therefore, NMDB will also stand as an informative gate on space research through neutron monitor’s data usage.  相似文献   

8.
This brief review addresses the relation between solar activity, cosmic ray variations and the dynamics of the heliosphere. The global features of the heliosphere influence what happens inside its boundaries on a variety of time-scales. Galactic and anomalous cosmic rays are the messengers that convey vital information on global heliospheric changes in the manner that they respond to these changes. By observing cosmic rays over a large range of energies at Earth, and with various space detectors, a better understanding is gained about space weather and climate. The causes of the cosmic ray variability are reviewed, with emphasis on the 11-year and 22-year cycles, step modulation, charge-sign dependent modulation and particle drifts. Advances in this field are selectively discussed in the context of what still are some of the important uncertainties and outstanding issues.  相似文献   

9.
The influence of high energy particles, specifically cosmic rays, on atmospheric physics and chemistry is highly discussed. In most of the proposed models the role of ionization in the atmosphere due to cosmic rays is not negligible. Moreover, effect(s) on minor constituents and aerosols are recently observed, specifically over the polar regions during strong solar particle events. According to the recent findings for such effects it is necessary an essential increase of ion production, specifically during the winter period. The galactic cosmic rays are the main source of ionization in the Earth’s stratosphere and troposphere. Occasionally, the atmospheric ionization is significantly enhanced during strong solar energetic particles events, specifically over the polar caps. During the solar cycle 23 several strong ground level enhancements were observed. One of the strongest was the Bastille day event occurred on 14 July 2000. Using a full Monte Carlo 3-D model, we compute the atmospheric ionization, considering explicitly the contribution of cosmic rays with galactic and solar origin, focusing on high energy particles. The model is based on atmospheric cascade simulation with the PLANETOCOSMICS code. The ion production rate is computed as a function of the altitude above the sea level. The ion production rate is computed on a step ranging from 10 to 30?min throughout the event, considering explicitly the spectral and angular characteristics of the high energy part of solar protons as well as their time evolution. The corresponding event averaged ionization effect relative to the average due to galactic cosmic rays is computed in lower stratosphere and upper troposphere at various altitudes, namely 20?km, 15?km, 12?km and 8?km above the sea level in a sub-polar and polar regions. The 24h and the weekly ionization effects are also computed in the troposphere and low stratosphere. Several applications are discussed.  相似文献   

10.
Fluctuations of cosmic rays and interplanetary magnetic field upstream of interplanetary shocks are studied using data of ground-based polar neutron monitors as well as measurements of energetic particles and solar wind plasma parameters aboard the ACE spacecraft. It is shown that coherent cosmic ray fluctuations in the energy range from 10 keV to 1 GeV are often observed at the Earth’s orbit before the arrival of interplanetary shocks. This corresponds to an increase of solar wind turbulence level by more than the order of magnitude upstream of the shock. We suggest a scenario where the cosmic ray fluctuation spectrum is modulated by fast magnetosonic waves generated by flux of low-energy cosmic rays which are reflected and/or accelerated by an interplanetary shock.  相似文献   

11.
In this study downward longwave (LW) atmospheric radiation data for the period of 2014–2020 were used to search for short-term periodicities using fast Fourier transform (FFT). Several local peaks in the power spectrum density were found and established. The time series exhibits a series of significant peaks (exceeding the 95% confidence limit), such as at 273 days, 227 days, 200 days, 178 days, 157 days, 110 days, 120 days, 87 days, 73 days, 53–56 days, 35–30 days, 25–27 days, 21 days, 13 days, and 9–10 days.Moreover, cosmic ray data from KACST muon detector and the Oulu neutron monitor, as well as the data for the solar radio flux at 10.7 cm (F10.7 cm), Dst index, and solar wind speed for the same period as the LW data, were used to look for common cyclic variations and periodicities matching those found in the LW radiation. This was done to investigate the possible effect of the solar activity parameters on LW radiation. Several common periodicities were observed in the spectra of all the variables considered, such as 227 days, 154–157 days, 25–27 days, and 21 days. Some of the periodicities found in the LW radiation spectrum can be attributed to the modulation of the cosmic ray intensity by solar activity. Others are attributed to the disturbances in the interplanetary magnetic field. Based on the spectral results, we suggest that the solar signals may directly or indirectly affect the variations of the downward longwave radiation, which in turn may affect climate change.  相似文献   

12.
The RV-2N-series instruments onboard Luna missions and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument onboard Lunar Reconnaissance Orbiter (LRO) were designed to characterize the global lunar radiation environment and its biological impacts by measuring cosmic ray (CR) intensity. In this study, we have shown that the RV-2N-series instruments onboard of Russian Luna missions and the CRaTER reliably detect both background CRs and solar proton events (SPEs) in the lunar radiation environment using the proton intensity measured by the RV-2N-series onboard Luna missions out of the Russian Luna program for the exploration of the Moon (November 1970–August 1975) and the CR intensity on the Moon observed by the CRaTER (June 2009–March 2011). Those were compared with the CR intensities observed by neutron monitors (McMurdo, Thule, Oulu) on the Earth. The sunspot number is used as the index of solar activity (NOAA National Geophysical Data Center). As a result, the background CR intensities on the Moon turned out to have a good anti-correlation with the solar activity. We have also identified the proton intensity increasing events on the Moon which have the similar profiles to those observed by neutron monitors on the Earth. Most of these events show the significant increase of proton intensities in the lunar radiation environment when the SPEs associated with solar eruptions are verified. Therefore, most of the proton intensity increasing events are associated with the energetic solar particles in the lunar environment.  相似文献   

13.
The diurnal and seasonal variations of F2 layer characteristics (critical frequency, peak height and bottomside thickness) over Irkutsk, Russia (52.3 N and 104.3 E) are studied by the method of running medians. The comparison with the IRI-2001 model during the decrease in solar activity in 2003–2006 revealed cases of both close agreement and systematic differences between predictions and observations. The systematic difference is not the only reason for disagreement between IRI and observations; there are also intrayear variations which are not associated with seasonal behavior. The period of observation was too short to make conclusions about solar activity dependence of the noon bottomside thickness and the modification of its diurnal behavior with decreasing solar activity.  相似文献   

14.
In this paper, we have investigated the intermediate-term periodicities of the relativistic (E > 10 MeV) solar electron flares measured by IMP-8 satellite of NASA for the time period of 1986–2001. This period of investigation includes the entire solar cycle 22; ascending, maximum and a part of descending phase of the current solar cycle 23. To determine accurately the occurrence rate of electron flux, we have employed three different spectral decomposition techniques, viz. fast Fourier transformation (FFT); maximum entropy method (MEM) and Lomb–Scargle periodogram analysis method. For solar cycle 22, in the low frequency range, power spectrum analysis exhibits statistically significant periodicities at ∼706, ∼504 and ∼392 days. In the intermediate frequency range, we have found a series of significant periodicities ∼294, ∼221, ∼153, ∼86, ∼73 and ∼66 days. For short term, periodicities of ∼21–23, ∼31 and ∼37 days were found in power spectrum. When solar cycle 23 is considered the significant periodicities are ∼20, ∼23, ∼29, ∼39, ∼54, ∼63, ∼118, ∼133 and ∼154 days. These results provide evidence that the best known Rieger period (∼153 days), appeared in the high energetic electron flux data for cycle 22 and also likely during maxima of cycle 23. The existence of these periodicities has been discussed in the light of earlier results.  相似文献   

15.
We analyzed the dynamics of global electron content (GEC) for the period 1998–2005 and compared the estimated GEC with variations of the 10.7-cm solar radio emission and with and with GEC values obtained with IRI-2001. We found a strong resemblance between the curves’ shapes for the experimental and modeled GEC: strong semiannual variations are discernible in these series and both curves tend to increase the absolute GEC value during the period of maximum of solar activity. However, there are some significant distinctions, such as absence of 27-day fluctuations in the series of GEC computed by the IRI-2001. On the contrary, observational GEC reflects well dynamics of solar activity: 27-day variations of GEC are very similar to the ones of the index F10.7, but GEC undergoes a lagging of about of 30–60 h as compared to value of the F10.7 index. The relative amplitude of 27-day variations decreases from 8% at the rising and falling solar activity to 2% at the period of its maximum.  相似文献   

16.
Relativistic neutrons were observed by the neutron monitors at Mt. Chacaltaya and Mexico City and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in association with an X17.0 flare on 2005 September 7. The neutron signal continued for more than 20 min with high statistical significance. Intense emissions of γ-rays were also registered by INTEGRAL, and during the decay phase by RHESSI. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. [Hua, X.-M., Kozlovsky, B., Lingenfelter, R.E. et al. Angular and energy-dependent neutron emission from solar flare magnetic loops, Astrophys. J. Suppl. Ser. 140, 563–579, 2002], and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch-angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the γ-ray line emission and that ions were continuously accelerated at the emission site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号