首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study investigated the physiological and biochemical characteristics of Scytonema javanicum, a pioneer species isolated from desert biological crusts, under salinity stress. Pigment analysis showed that salinity decreased chlorophyll a and phycocyanin content, while low salinity increased carotenoid concentration and high salinity decreased carotenoid concentration. Salinity also inhibited CO2 assimilation rate and photosynthetic oxygen evolution in this cyanobacterium. Chlorophyll a fluorescence transient parameters (φPo, φEo, ψO, RC/ABS, RC/CS, PIABS, and PICS) were decreased under salt stress, while dVo/dto(Mo), Vj and φDo were increased. The decrease of ETRmax and Yield and the change of chlorophyll a fluorescence transients showed that salt stress had an important influence on photosynthesis. These results indicated that the effects of salinity stress on photosynthesis in S. javanicum may depend on the inhibition of electron transport and the inactivation of the reaction centers, but this inhibition may occur in the electron transport pathway at the PSII donor and acceptor sites.  相似文献   

2.
Stress effects from the accumulation of metal salts may pose a problem for plants in closed biological systems such as spacecraft. This work examined the effects of salinity on growth, photosynthesis and carbon allocation in the crop plant, Amaranthus. Plants were germinated and grown in modified Hoagland's solution with NaCl concentrations of 0 to 1.0%. Plants received salt treatments at various times in development to assess effects on particular life history phases. For Amaranthus cruentus, germination, vegetative growth, flowering, seed development and yield were normal at salinities from 0 to 0.2%. Inhibition of these phases increased from 0.2 to 0.4% salinity and was total above 0.5%. 1.0% salinity was lethal to all developmental phases. Onset of growth phases were not affected by salinity. Plants could not be adapted by gradually increasing salinity over days or weeks. Water uptake increased, while photosynthetic CO2 uptake decreased with increasing salinity on a dry weight basis during vegetative growth. Respiration was not affected by salinity. After flowering, respiration and photosynthesis decreased markedly, such that 1.0% NaCl inhibited photosynthesis completely. Protein levels were unchanged with increasing salinity. Leaf starch levels were lower at salinities of 0.5% and above, while stem starch levels were not affected by these salinities. The evidence supports salt inhibition arising from changes in primary biochemical processes rather than from effects on water relations. While not addressing the toxic effects of specific ions, it suggests that moderate salinity per se need not be a problem in space systems.  相似文献   

3.
Time-varying spherical harmonic coefficients determined from the Gravity Recovery and Climate Experiment (GRACE) data provide a valuable source of information about the water mass exchange that is the main contributor to the Earth’s gravity field changes within a period of less than several hundred years. Moreover, by measuring seawater temperature and salinity at different layers of ocean depth, Argo floats help to measure the steric component of global mean sea level (GMSL). In this study, we quantify the rate of barystatic sea-level change using both GRACE RL05 and RL06 monthly gravity field models and compare the results with estimates achieved from a GMSL budget closure approach. Our satellite altimetry-based results show a trend of 3.90 ± 0.14 mm yr−1 for the GMSL rise. About 35% or 1.29 ± 0.07 mm yr−1 of this rate is caused by the thermosteric contribution, while the remainder is mainly due to the barystatic contribution. Our results confirm that the choice of decorrelation filters does not play a significant role in quantifying the global barystatic sea-level change, and spatial filtering may not be needed. GRACE RL05 and RL06 solutions result in the barystatic sea-level change trends of 2.19 ± 0.13 mm yr−1 and 2.25 ± 0.16 mm yr−1, respectively. Accordingly, the residual trend, defined as the difference between the altimetry-derived GMSL and sum of the steric and barystatic components, amounts to 0.51 ± 0.51 and 0.45 ± 0.44 mm yr−1 for RL05 and RL06-based barystatic sea-level changes, respectively, over January 2005 to December 2016. The exclusion of the halosteric component results in a lower residual trend of about 0.36 ± 0.46 mm yr−1 over the same period, which suggests a sea-level budget closed within the uncertainty. This could be a confirmation on a high level of salinity bias particularly after about 2015. Moreover, considering the assumption that the GRACE-based barystatic component includes all mass change signals, the rather large residual trend could be attributed to an additional contribution from the deep ocean, where salinity and temperature cannot be monitored by the current observing systems. The errors from various sources, including the model-based Glacial Isostatic Adjustment signal, independent estimation of geocenter motion that are not quantified in the GRACE solutions, as well as the uncertainty of the second degree of zonal spherical harmonic coefficients, are other possible contributors to the residual trend.  相似文献   

4.
The treatment of sodium, Na, and potassium, K, presents a challenge in space agriculture material recycling, as humans require Na and plants cannot grow at high Na concentrations. Hence, we are proposing the use of marine macro-algae to harvest K and other minerals from composted human waste. Ulva was selected for this feasibility study, since it tolerates a wide range of salinity levels. Growth capability of Ulva was examined under various total salinity levels and proportions of Na and K in the incubation medium. A homeostatic feature of Ulva was found in its intra-cellular concentration of Na and K, and in the intra-cellular ratio between Na and K (at 0.58 ± 0.30, lower than that of human metabolic waste). Intracellular concentration of K in Ulva is 20 times higher than seawater. Because of these characteristics, Ulva is a good candidate species for space agriculture.  相似文献   

5.
The Meteorological Research Institute multivariate ocean variational estimation (MOVE) System has been developed as the next-generation ocean data assimilation system in Japan Meteorological Agency. A multivariate three-dimensional variational (3DVAR) analysis scheme with vertical coupled temperature–salinity empirical orthogonal function modes is adopted. The MOVE system has two varieties, the global (MOVE-G) and North Pacific (MOVE-NP) systems. The equatorial Pacific and western North Pacific are analyzed with assimilation experiments using MOVE-G and -NP, respectively. In each system, the salinity and velocity fields are well reproduced, even in cases without salinity data. Changes in surface and subsurface zonal currents during the 1997/98 El Niño event are captured well, and their transports are reasonably consistent with in situ observations. For example, the eastward transport in the upper layer around the equator has 70 Sv in spring 1997 and weakens in spring 1998. With MOVE-NP, the Kuroshio transport has 25 Sv in the East China Sea, and 40 Sv crossing the ASUKA (Affiliated Surveys of the Kuroshio off Cape Ashizuri) line south of Japan. The variations in the Kuroshio transports crossing the ASUKA line agree well with observations. The Ryukyu Current System has a transport ranging from 6 Sv east of Taiwan to 17 Sv east of Amami. The Oyashio transport crossing the OICE (Oyashio Intensive observation line off Cape Erimo) line south of Hokkaido has 14 Sv southwestward (near shore) and 11 Sv northeastward (offshore). In the Kuroshio–Oyashio transition area east of Japan, the eastward transport has 41 Sv (32–36°N) and 12 Sv (36–39°N) crossing the 145°E line.  相似文献   

6.
Forced convective heat transfer is one of the major factors that dominate the thermal behaviors of aerostats. Due to the large physical size, the convection around an aerostat has high Reynolds numbers. The existing forced convective heat transfer correlations are limited to the Reynolds number lower than 105, which are not appropriate for aerostat applications. Therefore, it is necessary to obtain a convective heat transfer correlation applicable to spherical aerostats at high Reynolds numbers. In this paper, steady convective heat transfer from an isothermal spherical aerostat is numerically investigated. The numerical simulation is carried out by commercial computational fluid dynamic software with the Reynolds number from 20 to 108. The average Nusselt numbers are obtained and compared with those of available in literature. Based on regression and optimization with software, a new piecewise correlation of Nusselt number is proposed. The verification shows that the new correlation is reliable.  相似文献   

7.
The stability of the flow between two vertical, infinite, rigid, coaxial cylinders held at different temperatures is analyzed by linear stability theory. For a Prandtl number of 22.8 and a radius ratio of 0.02, the flow is unstable to an axisymmetric perturbation at a critical Grashof number of 2150; the wave speed of the instability is comparable to the maximum velocity of the unperturbed flow. When the rigid outer cylinder-fluid interface is replaced by a crystal-melt interface which can change shape, two new modes of instability occur at lower Grashof numbers. There is an asymmetric instability with a critical Grashof number of 180 and an axisymmetric instability with a critical Grashof number of 460; for both of these modes the wave speed of the instability is several orders of magnitude smaller than the unperturbed flow velocity.These calculations were motivated by and are in general agreement with our recent experiments on succinonitrile. A long vertical cylindrical sample of succinonitrile was heated by an electrical current through a coaxial vertical wire so that a vertical melt annulus formed between the coaxial heater and the surrounding crystal-melt interface. Above a critical Grashof number of circa 200, a helical crystal-melt interface formed which rotated steadily about the cylinder axis; the wave speed was several orders of magnitude less than the base flow velocity.  相似文献   

8.
3种转角下旋转U形方通道的局部换热   总被引:5,自引:1,他引:4  
在旋转数为0~0.26内用实验方法研究了转角对旋转U形方截面通道换热特性的影响.3种通道转角分别为0°,22.5°,45°.通道转角的变化引起了通道内哥氏力二次流的变化,继而导致通道各表面换热的变化.结果表明:随通道转角的增大,前缘与后缘之间努塞尔数的差异减小,而内侧面与外侧面之间的努塞尔数差异增大;在低旋转数下,转角的变化对U形通道换热的影响较小,但高旋转数下,转角的变化对U形通道换热的影响变得明显.   相似文献   

9.
采用圆弧模型,测量了旋转状态下凸表面气膜冷却效率 η ad和换热系数 h f的分布规律,重点研究旋转数 Rt=ωD/u 对气膜冷却的影响.叶片表面温度采用先进的液晶测温技术进行测量.结果表明:①在旋转离心力和哥氏力的共同作用下,气膜轨迹向高半径方向发生了明显的偏移,并且转速越高偏移角度越大;②旋转使得气膜冷却效率降低,换热系数上升;③在旋转状态下,气膜发生了分离再附壁的现象.  相似文献   

10.
A hand-held radiometer was used to gather spectral radiance data simulating bands 3, 4 and 5 of the Landsat-D Thematic Mapper. Variations in biomass of the salt marsh plant Spartina alterniflora were highly correlated to changes in spectral radiance expressed as the vegetation index or the infrared index. Negative stresses like increased soil salinity and increased concentrations of copper or zinc yielded reductions in biomass which were detected spectrally. Positive stresses like freshwater and sewage effluent additions produced an increase in biomass which also were detected using spectral data. The demonstrated detection of biomass from spectral data was expanded spatially and temporally to estimate net primary productivity of a salt marsh. Remote sensing estimates of production ranged from 5 to 20% of estimates from harvest data. Future applications of this biomass estimation technique, employing data gathered from satellite platforms and from the ground, are discussed for salt marsh systems.  相似文献   

11.
为了增强多孔方腔内流体流动与传热效果,采用非正交多松弛格子Boltzmann方法(MRT-LBM)对含有内热源的多孔方腔自然对流传热现象进行了数值模拟。研究了不同冷源布置方案(Scheme A~Scheme F)、内热源结构形式(Case 1、Case 2、Case 3)、内热源位置(ab)、Darcy数、Rayleigh数等对多孔方腔内流体流动与传热的影响。计算结果表明:冷源布置方案对腔内流体流动与传热具有重要影响,当冷源左右对称布置时,腔内温度场及流场亦对称分布;在高Rayleigh数下采用Scheme A的双上部冷源布置方案能明显提高腔内的传热强度;内热源的形状对腔内对流传热影响很大,高Rayleigh数下,Case 3的布置方式更好。内热源的位置ab对腔内的传热影响明显,提出了热壁面平均Nusselt数与位置a的拟合关系式,存在最佳的位置aa=0.25),使得腔内的对流传热最强;热壁面平均Nusselt数亦随b值变化表现出特定的变化规律。随着b值的增加,热壁面平均Nusselt数呈现先增后减再增的趋势。   相似文献   

12.
Penetrators, which emplace scientific instrumentation by high-speed impact into a planetary surface, have been advocated as an alternative to soft-landers for some four decades. However, such vehicles have yet to fly successfully. This paper reviews in detail, the origins of penetrators in the military arena, and the various planetary penetrator mission concepts that have been proposed, built and flown. From the very limited data available, penetrator developments alone (without delivery to the planet) have required ∼$30M: extensive analytical instrumentation may easily double this. Because the success of emplacement and operation depends inevitably on uncontrollable aspects of the target environment, unattractive failure probabilities for individual vehicles must be tolerated that are higher than the typical ‘3-sigma’ (99.5%) values typical for spacecraft. The two pathways to programmatic success, neither of which are likely in an austere financial environment, are a lucky flight as a ‘piggyback’ mission or technology demonstration, or with a substantial and unprecedented investment to launch a scientific (e.g. seismic) network mission with a large number of vehicles such that a number of terrain-induced failures can be tolerated.  相似文献   

13.
The increased number of potential threat modes under multi-constellation advanced receiver autonomy integrity monitoring (ARAIM) requires an increase in the number of subsets and a correspondingly high computational load. A new satellite selection method based on integrity support message (ISM) parameters is proposed and compared with GDOP-based selection. The performance was tested on five days of data measurements from 21 multi-global navigation satellite system experiment (MGEX) stations distributed around the world, as well as simulation using the broadcast ephemeris. The results show that the proposed ISM-based satellite selection method is highly compatible with the baseline ARAIM. This method could reduce the computational times by about 60–70% quickly, with minimising vertical protection level (VPL) loss, which was consistently within 1 m, even a reduced VPL value in some epochs, and resulting in an improved availability. The simulation results were similar to the MGEX data. It appears that the application of ISM-based satellite selection can effectively reduce computational burden with a minimal impact on availability.  相似文献   

14.
NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.  相似文献   

15.
电磁层析成像(EMT)中传感器阵列的设置决定了获得的感应电压测量值的数量,对成像的效果有着重要的影响。为了探究传感器设置对成像质量的影响规律,通过改变传感器阵列中线圈的数量及相对位置对传感器阵列进行优化。在COMSOL Multi-physics中建立不同线圈数量的传感器阵列模型,采用不同的成像算法进行成像并比较成像效果,发现适当增加传感器的个数可以提高成像质量,但增加到一定数量则成像效果下降;同时在传感器阵列固定的情况下将传感器阵列按照一定规则进行旋转,发现旋转之后叠加的复合成像效果要优于未旋转的成像效果。该结果对下一步EMT系统设计中传感器阵列的设置具有一定的指导意义。   相似文献   

16.
It has been demonstrated that the transgenic microorganism Escherichia coli Z905/pPHL7 (AprLux+) can exist for a long time at an elevated concentration of mineral salts. The microorganism was introduced into microcosms with sterile brackish water (salinity variable from 21 to 22 g l-1) taken from Lake Shira (Khakasia, Russia). The survival of the microorganism was estimated both by measuring the growth of the colonies on solid nutrient media and by the bioluminescence exhibited by the transgenic strain in samples from the microcosms and in the enrichment culture with the added selective factor-ampicillin (50 micrograms/ml). In the enrichment culture, the bioluminescent signal was registered through the 160-day experiment. It has been shown that in the closed microcosms with brackish water the E. coli strain becomes heterogeneous in its ampicillin resistance. The populations of the transgenic strain were mainly represented by isolates able to persist in the medium containing 50 micrograms/ml, but there were also the cells (about 10%) with the threshold of ampicillin resistance not more than 0.05 micrograms/ml. Thus, it was shown that in the microcosms with brackish water and in the absence of the selective factor the transgenic strain survives and retails the recombinant plasmid.  相似文献   

17.
To achieve sustainable, healthy closed ecological systems requires solutions to challenges of closing the water cycle – recycling wastewater/irrigation water/soil medium leachate and evaporated water and supplying water of required quality as needed for different needs within the facility. Engineering Biosphere 2, the first multi-biome closed ecological system within a total airtight footprint of 12,700 m2 with a combined volume of 200,000 m3 with a total water capacity of some 6 × 106 L of water was especially challenging because it included human inhabitants, their agricultural and technical systems, as well as five analogue ecosystems ranging from rainforest to desert, freshwater ecologies to saltwater systems like mangrove and mini-ocean coral reef ecosystems. By contrast, the Laboratory Biosphere – a small (40 m3 volume) soil-based plant growth facility with a footprint of 15 m2 – is a very simplified system, but with similar challenges re salinity management and provision of water quality suitable for plant growth. In Biosphere 2, water needs included supplying potable water for people and domestic animals, irrigation water for a wide variety of food crops, and recycling and recovering soil nutrients from wastewater. In the wilderness biomes, providing adequately low salinity freshwater terrestrial ecosystems and maintaining appropriate salinity and pH in aquatic/marine ecosystems were challenges. The largest reservoirs in Biosphere 2 were the ocean/marsh with some 4 × 106 L, soil with 1 to 2 × 106 l, primary storage tank with 0 to 8 × 105 L and storage tanks for condensate and soil leachate collection and mixing tanks with a capacity of 1.6 × 105 L to supply irrigation for farm and wilderness ecosystems. Other reservoirs were far smaller – humidity in the atmosphere (2 × 103 L), streams in the rainforest and savannah, and seasonal pools in the desert were orders of magnitude smaller (8 × 104 L). Key technologies included condensation from humidity in the air handlers and from the glass space frame to produce high quality freshwater, wastewater treatment with constructed wetlands and desalination through reverse osmosis and flash evaporation were key to recycling water with appropriate quality throughout the Biosphere 2 facility. Wastewater from all human uses and the domestic animals in Biosphere 2 was treated and recycled through a series of constructed wetlands, which had hydraulic loading of 0.9–1.1 m3 day−1 (240–290 gal d−1). Plant production in the wetland treatment system produced 1210 kg dry weight of emergent and floating aquatic plant wetland which was used as fodder for the domestic animals while remaining nutrients/water was reused as part of the agricultural irrigation supply. There were pools of water with recycling times of days to weeks and others with far longer cycling times within Biosphere 2. By contrast, the Laboratory Biosphere with a total water reservoir of less than 500 L has far quicker cycling rapidity: for example, atmospheric residence time for water vapor was 5–20 min in the Laboratory Biosphere vs. 1–4 h in Biosphere 2, as compared with 9 days in the Earth’s biosphere. Just as in Biosphere 2, humidity in the Laboratory Biosphere amounts to a very small reservoir of water. The amount of water passing through the air in the course of a 12-h operational day is two orders of magnitude greater than the amount stored in the air. Thus, evaporation and condensation collection are vital parts of the recycle system just as in Biosphere 2. The water cycle and sustainable water recycling in closed ecological systems presents problems requiring further research – such as how to control buildup of salinity in materially closed ecosystems and effective ways to retain nutrients in optimal quantity and useable form for plant growth. These issues are common to all closed ecological systems of whatever size, including planet Earth’s biosphere and are relevant to a global environment facing increasing water shortages while maintaining water quality for human and ecosystem health. Modular biospheres offer a test bed where technical methods of resolving these problems can be tested for feasibility.  相似文献   

18.
为解决模糊控制器中规则数目随系统变量的个数呈指数增长的问题,利用分层模糊系统设计了一类非线性系统的间接自适应控制器,并证明了所提出的设计方法不但能够保证闭环系统的一致有界性,而且可使跟踪误差收敛到原点的小邻域内.通过对倒立摆控制的仿真研究验证了方法的有效性.   相似文献   

19.
对不同空气伴流速度下丙烷层流射流火焰向湍流火焰的转捩过程进行实验观测,分析伴流对火焰转捩行为及稳定性的影响.相对于静止环境中的射流火焰,较大速度的伴流可以减小浮力效应对射流扩散火焰转捩过程的影响,使火焰发生转捩的临界Reynolds数(Recr)增大,即火焰推迟转捩.但当伴流速度较小时,Recr保持不变,转捩过程中的射流火焰发生周期性振荡,振荡幅度随着伴流速度的增大而减小,继续增大伴流速度,火焰振荡的周期性最终消失,转而呈现随机性.实验还发现,喷嘴直径较大的扩散火焰的Recr更大.考虑到火焰对燃料射流局部流动状态的影响,对此现象进行了解释.   相似文献   

20.
In this paper we explore the possibilities of applying satellite ocean colour (OC) observations and SST to study the changes in the conditions of hypoxia in the near-bottom water in the western part of Peter the Great Bay. Near-bottom water hypoxia occurs in water bodies with increased organic matter influx when the dissolved oxygen (DO) consumed at its oxidation is not restored. Consumption of most DO is usually attributed to the oxidation of organic matter formed as a result of increased algae growth during water eutrophication. Satellite data on indicators of phytoplankton (chlorophyll-a concentration (Chl) and fluorescence (FLH)) allow to analyze the spatial-temporal changes of this substation. Coloured dissolved organic matter (CDOM), non-algal particles (NAP) influence on satellite Chl estimates and also on near-bottom water hypoxia formation. This study analyzes daily, seasonal, and inter-annual changes in the distributions of indicators (Chl, FLH, the coefficients of light absorption by coloured detrital matter (aCDM) and light backscattering by suspended particles (bbp)), based on the instant satellite OC data from MODIS-Aqua. Data on the Chl, the sea surface temperature (SST) from the MODIS-Aqua, the precipitation from the TRMM satellite and the hydrometeorological stations (HMSs), the wind speed and direction from HMS “Vladivostok” are used to study the influence of hydrometeorological conditions on the Chl values. These distributions were compared with the literary information based on field observations of the hypoxia cases in the same area and with the changes in the vertical DO, Chl, temperature, salinity distribution obtained by coastal expeditions in October-November 2010 and February-March 2011. Significant interrelations within 95% confidence level between the satellite Chl, FLH values calculated at the MUMM atmospheric correction and in situ Chl values obtained in the autumn of 2010 were reached separately for the cases with winds of northern and southern directions with the correlation coefficients of 0.71, 0.48 and 0.49, 0.71, respectively. Significant dependences of Chl on SST and Chl on wind speed explained by the influence of continental runoff and water ventilation were obtained. Therefore, the changes of Chl reflect the changes of hypoxic conditions in the near-bottom water. In Amursky Bay the onset of hypoxia was at the Chl and SST values equal to 4 mg m?3 and 13 °C (↑ – at increasing SST); near Furugelm Island it was at 1.6 mg m?3 and 25 °C (↑), 1 mg m?3 and 21 °C (↓). The difference in the Chl values was reflected in the hypoxia onset timings that were the beginning of June (2011), August (2013), and September (2014), respectively. The water flow from the eastern coast of Amursky Bay in early August of 2013 recorded from the OC and SST satellite imagers appeared in an additional hypoxic zone. Decreased OC characteristics in the runoff of the Razdolnaya River in August-September of 2014 were a sign of hypoxia at its mouth. Near Furugelm Island the hypoxia destruction (increase in the DO level from 1 to 4.5 ml L?1) was observed at the Chl of 0.9 mg m?3 and SST = 18 °C (↓). At the autumn maximum of Chl equal to 1.7 mg m?3 and SST = 4 °C (↓) in mid-November the DO level here increased to 8 ml L?1. In Amursky Bay, short-term destructions/weakening of hypoxia manifested themselves in sharp increases of Chl. At that, the ratio between the Chl value and the approximation level was equal to 2 and higher for SST equal to 22–25 °C (↑), to 0.9 and higher for SST equal to 5–13 °C (↓). With the water stratification destruction in temperature and the noticeable weakening of the stratification in salinity (mid-November), the hypoxia destructed (the DO level increased from 2 to 6 ml L?1). In this case, Chl and SST were about 3 mg m?3 and 5 °C (↓).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号