首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
There are extensive reports of ionospheric disturbances before the great 2008 Wenchuan earthquake, which are possibly explained by seismogenic electric field hypotheses linked with the aerosols injected in atmosphere. This paper attempts to investigate the possible change of atmospheric aerosol optical depth (AOD) associated with this earthquake by using MODIS data from both Terra and Aqua satellites. The result shows a clear enhancement of AOD along the Longmenshan faults 7 days before the quake, which is 1 day and 4 days earlier than the reported negative and positive ionospheric disturbances, respectively, and is 1 day earlier than or quasi-synchronism with other reported atmospheric anomalies including air temperature, outgoing longwave radiation and relative humidity. Particularly, the spatial distribution of AOD enhancement is very local and it is correlated well with the active faults and surface ruptures. We suggest that this unique enhancement could be associated with the Lithosphere–Atmosphere–Ionosphere coupling process during the preparation of the Wenchuan earthquake.  相似文献   

2.
This paper uses principal component analysis (PCA) to determine the spatial pattern of total electron content (TEC) anomalies in the ionosphere post the China’s Wenchuan Earthquake of 12 May, 2008 (UTC) (Mw = 7.9). PCA and image processing are applied to the global ionospheric map (GIM) with transforms conducted for the time period 08:00–10:00 UT on 12 May 2008. Results show that at a height of approximately 200 km the anomaly is widespread and less intense; however, it becomes more localized with height reaching maximum intensity and localization at an altitude of 300 km. The spatial distribution is remarkably similar to that reported for a TEC anomaly previously identified as a precursor anomaly on May 9, 2008 for the same time period. Potential causes of the results are discussed with emphasis given to vertical acoustic gravity waves based on the spatial pattern identified.  相似文献   

3.
This paper presents an investigation into the variability and predictability of the maximum height of the ionospheric F2 layer, hmF2 over the South African region. Data from three South African stations, namely Madimbo (22.4°S, 26.5°E, dip angle: −61.47°), Grahamstown (33.3°S, 26.5°E, dip angle: −64.08°) and Louisvale (28.5°S, 21.2°E, dip angle: −65.44°) were used in this study. The results indicate that hmF2 shows a larger variability around midnight than during the daytime for all seasons. Monthly median hmF2 values were used in all cases and were compared with predictions from the IRI-2007 model, using the URSI (Union Radio-Scientifique Internationale) coefficient option. The analysis covers the diurnal and seasonal hourly hmF2 values for the selected months and time sectors e.g. January, July, April and October for 2003 and 2005. The time ranges between (03h00–23h00 UT; LT = UT + 2h) representing the local sunrise, midday, sunset and midnight hours. The time covers sunrise, midday, sunrise, and midnight hours (03–06h00 UT, 07–11h00 UT, sunrise 16–18h00 UT and 22–23h00 UT; LT = UT + 2h). The dependence of the results on solar activity levels was also investigated. The IRI-2007 predictions follow fairly well the diurnal and seasonal variation patterns of the observed hmF2 values at all the stations. However, the IRI-2007 model overestimates and underestimates the hmF2 value during different months for all the solar activity periods.  相似文献   

4.
The performance of JB2008 and NRLMSISE-00 models, in describing the response of the thermosphere to magnetic activity are evaluated against total mass density retrieved from accelerometer measurements made onboard CHAMP satellite during 5 years. We show that the global low- to mid-latitude disturbance amplitude is correctly described by the JB2008 model for low solar activity conditions and by both the JB2008 and the NRLMSISE-00 models for high solar activity conditions. For low solar activity conditions, statistics based on almost 3 years of data confirm the large underestimation by the NRLMSISE-00 model quantified by Lathuillère et al. (2008) for the year 2004. We also found that the time delay between low- to mid-latitude global thermosphere disturbance and magnetic activity is statistically well estimated by the NRLMSISE-00 and JB2008 models for disturbed conditions. For moderately disturbed conditions however, the time delay estimated by the JB2008 model is too large by about 3 h. For very disturbed conditions, we found different time delays during day-time and night-time, using new geomagnetic proxies with a 30-min time resolution.  相似文献   

5.
Satellite Laser Ranging (SLR) is a powerful and efficient technique to measure spin parameters of satellites equipped with corner cube reflectors. We obtained spin period determination of the satellite AJISAI from SLR data only: 17246 pass-by-pass estimates from standard 1–15 Hz SLR data (14/Aug/1986–30/Dec/2008) and 1444 pass-by-pass estimates (9/Oct/2003–30/Dec/2008) from data of the first 2 kHz SLR system from Graz, Austria. A continuous history of the slowing down of AJISAI spin is derived from frequency analysis, and corrected for the apparent effects. The apparent corrections, elaborated here, allowed very accurate determination of AJISAI initial spin period: 1.4855 ± 0.0007 [s]. The paper identifies also non-gravitational effects as a source of the periodical changes in the rate of slowing down of the satellite.  相似文献   

6.
Climatological aerosol optical depths (AOD) over Bangalore, India have been examined to bring out the temporal heterogeneity in columnar aerosol characteristics. AOD values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra and Aqua satellites, for the period of 2002–2011 have been analyzed (independently) for the purpose. Frequency distributions of the AOD values are examined to infer the monthly mean values. Monthly and seasonal variations of AOD are investigated in the light of regional synoptic meteorology. Climatological monthly and seasonal mean Terra and Aqua AOD values exhibited similar temporal variation patterns. Monthly mean AOD values increased from January, peaks during May and thereafter (except for a secondary peak during July) fall off to reach a minimum during December. Monsoon season recorded the highest climatological seasonal mean AOD, while winter season recorded the lowest. AOD values show an overall increasing trend on a yearly basis, which was found mainly due to sustained increase in the seasonal averaged AOD during summer. The results obtained in the present study are compared with that of the earlier studies over the same location and also with AOD over various other Indian locations. Finally, the radiative and climatic impacts are discussed.  相似文献   

7.
The Indo-Gangetic basin (IGB) extends 2000 km in length along NW–SE and has 400 km width, in the north the basin is bounded by towering Himalaya. High aerosol optical depth (AOD) is observed over the IGB throughout the year. The Himalaya restricts the transport of aerosols across Tibet and China. We have used ground based Kanpur and Gandhi College Aerosol Robotic Network (AERONET) stations and Multiangle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) Terra level-3 AOD products for the years 2005–2009 to study the variability of aerosol over the Indo-Gangetic (IG) plains. An increase in both satellite-derived as well as ground observed aerosol loading during 2005–2009 has been found over major cities located in the IG plains. The correlation coefficients between AERONET and MISR data are found to be 0.70, 0.36 0.82, in contrast the correlation coefficients between AERONET and MODIS 0.49, 0.68, and 0.43, respectively during summer, winter and monsoon seasons. The AOD estimation using MISR is found to be close to AERONET data during summer and monsoon seasons, in contrast MODIS estimation is better during winter season.  相似文献   

8.
The present paper deals with observations of wave activity in the period range 1–60 min at ionospheric heights over the Western Cape, South Africa from May 2010 to July 2010. The study is based on the Doppler type sounding of the ionosphere. The Doppler frequency shift measurements are supplemented with measurements of collocated Digisonde DPS-4D at SANSA Space Sciences, Hermanus. Nine geomagnetically quiet days and nine geomagnetically active days were included in the study. Waves of periods 4–30 min were observed during the daytime independent of the level of geomagnetic activity. Amplitudes of 10–30 min waves always increased between 14:00 and 16:15 UT (16:00–18:15 LT). Secondary maxima were observed between 06:00 and 07:00 UT (08:00–09:00 LT). The maximum wave amplitudes occurred close to the time of passage of the solar terminator in the studied region which is known to act as a source of gravity waves.  相似文献   

9.
Long-term analysis of data from two radiation detection instruments on the International Space Station (ISS) shows that the docking of the Space Shuttle drops down the measured dose rates in the region of the South Atlantic Anomaly (SAA) by a factor of 1.5–3. Measurements either by the R3DE detector, which is outside the ISS at the EuTEF facility on the Columbus module behind a shielding of less than 0.45 g cm−2, and by the three detectors of the Liulin-5 particle telescope, which is inside the Russian PEARS module in the spherical tissue equivalent phantom behind much heavier shielding demonstrate that effect. Simultaneously the estimated averaged incident energies of the incoming protons rise up from about 30 to 45 MeV. The effect is explained by the additional shielding against the SAA 30–150 MeV protons, provided by the 78 tons Shuttle to the instruments inside and outside of the ISS. An additional reason is the ISS attitude change (performed for the Shuttle docking) leading to decreasing of dose rates in two of Liulin-5 detectors because of the East–West proton fluxes asymmetry in SAA. The Galactic Cosmic Rays dose rates are practically not affected.  相似文献   

10.
This paper presents PWV estimates from GPS data computed at four continuously operated GPS stations in Argentina established at Buenos Aires, Córdoba, Rosario and Salta over a 1 year period (2006–2007). The objective is to analyze the behaviour of the GPS PWV estimation using mean tropospheric temperature (TmTm) values from the Bevis model, Sapucci model and obtained by a numerical integration of variables provided by the operational analysis of the National Centre of Environmental Prediction (NCEP). The results are validated using PWV values from nearest radio soundings. Moreover, a comparison between PWV values determined from microwave sensors deployed on the NOAA-18 satellite and PWV from GPS observations is also presented.  相似文献   

11.
Tashkent International Heliophysical Year (IHY) station is a member of Atmospheric Weather Electromagnetic System for Observation, Modeling and Education (AWESOME) network being operated globally to study the ionosphere and the magnetosphere with the help of electromagnetic waves in Very Low Frequency (VLF) band. Regular monitoring of the D- and F-layers of ionosphere over Central Asia territory is being performed on the permanent basis starting year 2008. We have studied VLF amplitude anomalies related to the EQs occurred in 2008–2009 years with magnitude more than 5 on the path way from the VLF transmitters to the Tashkent station assuming that propagation of VLF ground-based transmitters signals can be perturbed by EQ preparation detectable from the ground-based measurements in the VLF bands. For analyzing narrowband data we have used the nighttime fluctuation (NF) method paying attention to the data obtained during the local nighttime (20:00 LT–04:00 LT) in Tashkent where the VLF receiver is operating. The mean nighttime amplitude (or trend) and nighttime fluctuation are found to increase significantly before the EQ occurred on the path way from the transmitters to the receiver. The obtained results have revealed an agreement with VLF amplitude anomalies observed in Tashkent VLF station during the strong EQs occurred on the path way from the transmitters to the receiver. Some results are presented to show the probing potentiality of VLF waves to predict short term EQs with high magnitude.  相似文献   

12.
In this study, 30 storm sudden commencement (SSC) events during the period 2001–2007 for which daytime vertical E × B drift velocities from JULIA radar, Jicamarca (geographic latitude 11.91°S, geographic longitude 283.11°E, 0.81°N dip latitude), Peru and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca (geographic latitude 11.91°S, geographic longitude 283.11°E, 0.81°N dip latitude) and Piura (geographic latitude 5.21°S, geographic longitude 279.41°E, 6.81°N dip latitude), in Peru, were considered. It is observed that a positive correlation exists between peak value of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of SSC. A qualitative analysis made after selecting the peak values of daytime vertical E × B drift velocity and ΔH showed that 57% of the events have daytime vertical E × B drift velocity peak in the magnitude range 20–30 m/s and 63% of the events have ΔH peak in the range 80–100 nT. The maximum probable (45%) range of time of occurrence of peak value for both vertical E × B drift velocity and ΔH during the daytime hours were found to be the same, i.e., 10:00–12:00 LT. A strong positive correlation was also found to exist between the daytime vertical E × B drift velocity and ΔH for all the three consecutive days of SSC, for all the events considered. To establish a quantitative relationship between day time vertical E × B drift velocity and ΔH, linear and polynomial (order 2 and 3) regression analysis (Least Square Method (LSM)) were carried out, considering the fully disturbed day after the commencement of the storm as ‘disturbed period’ for the SSC events selected for analysis. The formulae indicating the relationship between daytime vertical E × B drift velocity and ΔH, for the ‘disturbed periods’, obtained through the regression analysis were verified using the JULIA radar observed E × B drift velocity for 3 selected events. Root Mean Square (RMS) error analysis carried out for each case suggest that polynomial regression (order 3) analysis provides a better agreement with the observations from among the linear, polynomial (order 2 and 3) analysis.  相似文献   

13.
Solar dependence of electron and ion temperatures (Te and Ti) in the ionosphere is studied using RPA data onboard SROSS C2 at an altitude of ∼500 km and 77°E longitude during early morning hours (04:00–07:00 LT) for three solar activities: solar minimum, moderate and maximum during winter, summer and equinox months in 10°S–20°N geomagnetic latitude. In winter the morning overshoot phenomenon is observed around 06:00 LT (Te enhances to ∼4000 K) during low-solar activity and to Te ∼ 3800 K, during higher solar activity. In summer, it is observed around 05:30 LT, but the rate of Te enhancement is higher during moderate solar activity (∼2700 K/hr) than the low-solar activity (∼1700 K/hr). During equinox, this phenomenon is delayed and is observed around 06:00 LT (∼4200 K) during all three activities.  相似文献   

14.
The positions and velocities of the four Satellite Laser Ranging (SLR) stations: Yarragadee (7090), Greenbelt (7105), Graz (7839) and Herstmonceux (7840) from 5-year (2001–2005) SLR data of low orbiting satellites (LEO): Ajisai, Starlette and Stella were determined. The orbits of these satellites were computed from the data provided by 20 SLR stations. All orbital computations were performed by means of NASA Goddard’s GEODYN-II program. The geocentric coordinates were transformed to the topocentric North–South, East–West and Vertical components in reference to ITRF2005. The influence of the number of normal points per orbital arc and the empirical acceleration coefficients on the quality of station coordinates was studied. To get standard deviation of the coordinates determination lower than 1 cm, the number of the normal points per site had to be greater than 50. The computed positions and velocities were compared to those derived from LAGEOS-1/LAGEOS-2 data. Three parameters were used for this comparison: station coordinates stability, differences from ITRF2005 positions and velocities. The stability of coordinates of LEO satellites is significantly worse (17.8 mm) than those of LAGEOS (7.6 mm), the better results are for Ajisai (15.4 mm) than for Starlette/Stella (20.4 mm). The difference in positions between the computed values and ITRF2005 were little bit worse for Starlette/Stella (6.6 mm) than for LAGEOS (4.6 mm), the results for Ajisai were five times worse (29.7 mm) probably due to center of mass correction of this satellite. The station velocities with some exceptions were on the same level (≈1 mm/year) for all satellites. The results presented in this work show that results from Starlette/Stella are better than those from Ajisai for station coordinates determination. We can applied the data from LEO satellites, especially Starlette and Stella for determination of the SLR station coordinates but with two times lower accuracy than when using LAGEOS data.  相似文献   

15.
The period January–February 2008 was characterized by four Sudden Stratospheric Warmings (SSWs) in the Northern Hemisphere, of which the last warming, at the end of February 2008, was a major warming. A significant decrease in mesospheric water vapour (H2O) of more than 2 ppmv (∼40%) was observed by the ground-based microwave (GBMW) radiometer in Seoul, S. Korea [37.3°N, 126.3°E] during the major SSW. A comparison with ground-based mesospheric H2O observations from the mid-latitude station in Bern [46.9°N, 7°E] revealed an anticorrelation in the mesospheric H2O data during the major SSW. In addition, prior to the major warming, strong periodic fluctuations were recorded in the Aura MLS vertical temperature distribution between 15 and 0.05 hPa at Seoul. The mesospheric temperature oscillation was found to have a period of ∼10–14 days with a persistency of 3–4 cycles.  相似文献   

16.
We have conducted a feasibility study for the geostationary monitoring of the diurnal variation of tropospheric NO2 over Tokyo. Using NO2 fields from a chemical transport model, synthetic spectra were created by a radiative transfer model, SCIATRAN, for summer and winter cases. We then performed a Differential Optical Absorption Spectroscopy (DOAS) analysis to retrieve NO2 slant column densities (SCDs), and after converting SCDs into vertical column densities (VCDs), we estimated the precision of the retrieved VCDs. The simulation showed that signal-to-noise ratio (SNR) ? 500 is needed to detect the diurnal variation and that SNR ? 1000 is needed to observe the local minimum occurring in the early afternoon (LT13–14) in summer. In winter, the detection of the diurnal variation during LT08–15 needs SNR ? 500, and SNR ? 1000 is needed if early morning (LT07) and early evening (LT16) are included. The currently discussed sensor specification for the Japanese geostationary satellite project, GMAP-Asia, which has a horizontal resolution of 10 km and a temporal resolution of 1hr, has demonstrated the performance of a precision of several percent, which is approximately corresponding to SNR = 1000–2000 during daytime and SNR ? 500 in the morning and evening. We also discuss possible biases caused by the temperature dependence of the absorption cross section utilized in the DOAS retrieval, and the effect of uncertainties of surface albedo and clouds on the estimation of precisions.  相似文献   

17.
Study of depth–dose distributions for intermediate energy ion beams in tissue-like media such as polyethylene (CH2)n provides a good platform for further improvements in the fields of hadrontherapy and space radiation shielding. The depth–dose distributions for 12C ions at various energies and for light and intermediate ion beams (3He, 16O, 20Ne and 28Si) as well as for heavy ions 56Fe in polyethylene were estimated by using simulation toolkit: Geant4. Calculations were performed mainly by considering two different combinations of standard electromagnetic (EM), binary cascade (BIC), statistical multifragmentation (SMF) and Fermi breakup (FB) models. The energies of the ion beams were selected to achieve the Bragg peaks at predefined position (∼60 mm) and as per their availability. Variations of peak-to-entrance ratio (from 7.44 ± 0.05 to 8.87 ± 0.05), entrance dose (from 2.89 ± 0.01 to 203.71 ± 0.63 MeV/mm) and entrance stopping power (from 3.608 to 208.858 MeV/mm, calculated by SRIM) with atomic number (Z) were presented in a systematic manner. The better peak-to-entrance ratio and less entrance dose in the region Z = 2 to 8 (i.e. 3He to 16O) may provide the suitability of the ion beams for hadrontherapy.  相似文献   

18.
The occurrence of mid-latitude spread F (SF) over South Africa has not been extensively studied since the installation of the DPS-4 digisondes in 1996 and 2000 at Grahamstown (33.32 °S, 26.50 °E) and Madimbo (22.38 °S, 30.88 °E) respectively. This study is intended to quantify the probability of occurrence of F region disturbances associated with SF over South Africa. A study was conducted using data for 8 years (2001–2008) over Madimbo (with a time resolution of 30 min) and Grahamstown (with a variable time resolution of 15 and 30 min). In this study, SF has been classified into frequency SF (FSF), range SF (RSF) and mixed SF (MSF). The SF events were identified by manually identifying ionograms showing SF and tabulating them according to type for further statistical analysis. The results show that the diurnal pattern of SF peaks strongly between 01:00 and 02:00 local time, LT (LT = UT + 2 h), where UT is the universal time. This pattern is true for all seasons and types of SF at Madimbo and Grahamstown in 2001 and 2005, except for RSF which had peaks during autumn and spring in 2001 at Madimbo. The probability of both MSF and FSF tends to increase with decreasing solar activity, with a peak in 2005 (a moderate solar activity period). The seasonal peaks of MSF and FSF are more frequent during winter months at both Madimbo and Grahamstown. In this study, SF was evident in ∼0.03% and ∼0.06% of the available ionograms at Madimbo and Grahamstown respectively during the 8 years.  相似文献   

19.
Observations of charged particle fluxes in the stratosphere of the polar regions represent the cosmic rays variations with energy above 100 MeV. At the end of 2009 these fluxes reached the highest level for the time of observations from mid 1957 and were by 17% higher than the previous extremum value of May 1965. In the mean time the ground-based neutron monitors showed the remarkably less count rate enhancement. These results argue for the significant change in the energy spectrum of incoming particles in 2008–2009 in the energy range of ∼100–1500 MeV/n.  相似文献   

20.
The variations of plasma density in topside ionosphere during 23rd/24th solar cycle minimum attract more attentions in recently years. In this analysis, we use the data of electron density (Ne) from DEMETER (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions) satellite at the altitude of 660–710 km to investigate the solstitial and equinoctial asymmetry under geomagnetic coordinate system at LT (local time) 1030 and 2230 during 2005–2010, especially in solar minimum years of 2008–2009. The results reveal that ΔNe (December–June) is always positive over Southern Hemisphere and negative over northern part whatever at LT 1030 or 2230, only at 0–10°N the winter anomaly occurs with ΔNe (December–June) > 0, and its amplitude becomes smaller with the declining of solar flux from 2005 to 2009. The ΔNe between September and March is completely negative during 2005–2008, but in 2009, it turns to be positive at latitudes of 20°S–40°N at LT 1030 and 10°S–20°N at LT 2230. Furthermore, the solstitial and equinoctial asymmetry index (AI) are calculated and studied respectively, which all depends on local time, latitude and longitude. The notable differences occur at higher latitudes in solar minimum year of 2009 with those in 2005–2008. The equinoctial AI at LT 2230 is quite consistent with the variational trend of solar flux with the lowest absolute AI occurring in 2009, the extreme solar minimum, but the solstitial AI exhibits abnormal enhancement during 2008 and 2009 with bigger AI than those in 2005–2007. Compared with the neutral compositions at 500 km altitude, it illustrates that [O/N2] and [O] play some roles in daytime and nighttime asymmetry of Ne at topside ionosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号