首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Over the last years the potential effect that the geomagnetic activity may have on human physiological parameters (such as heart rate, arterial diastolic and systolic pressure) is being widely investigated with irrefutable results. As it is suggested, human health can be affected by solar activity and related geophysical changes. In this study a group of 4018 Slovak aviators was examined from January 1, 1994 to December 31, 2002, covering periods with high solar and geomagnetic activity. Specifically, medical data of mean values of arterial diastolic and systolic blood pressure, which were registered during the medical examinations of the Slovak aviators, were related to daily variations of Dst and Ap geomagnetic indices. All subjects were men (from 18 to 60 years old) in good health. Statistical significance levels (p-values) of the effect of geomagnetic activity on the aforementioned parameters up to three days before and three days after the geomagnetic event were established using the statistical method ANalysis Of VAriance (ANOVA). Statistical analysis of the arterial blood pressure variations for different levels of geomagnetic activity revealed that geomagnetic changes are connected to variations of the human physiological parameters.  相似文献   

2.
Here we compare the traditional analog measure of geomagnetic activity, Ak, with the more recent digital indices of IHV and Ah based on hourly mean data, and their derivatives at the auroral station Sodankylä. By this selection of indices we study the effects of (i) analog vs. digital technique, and (ii) full local-time vs. local night-time coverage on quantifying local geomagnetic activity. We find that all other indices are stronger than Ak during the low-activity cycles 15–16 suggesting an excess of very low scalings in Ak at this time. The full-day indices consistently depict stronger correlation with the interplanetary magnetic field strength, while the night-time indices have higher correlation with solar wind speed. The Ak index correlates better with the digital indices of full-day coverage than with any night-time index. However, Ak depicts somewhat higher activity levels than the digital full-day indices in the declining phase of the solar cycle, indicating that, due to their different sampling rates, the latter indices are less sensitive to high-frequency variations driven by the Alfvén waves in high-speed streams. On the other hand, the night-time indices have an even stronger response to solar wind speed than Ak. The results strongly indicate that at auroral latitudes, geomagnetic indices with different local time coverage reflect different current systems, which, by an appropriate choice of indices, allows studying the century-scale dynamics of these currents separately.  相似文献   

3.
The magnetosheath plays a dominant role in the Sun–Earth connection because the magnetosheath field and plasma actually interact with the magnetosphere. The interactions change the magnetospheric magnetic field from its nominal value through a long chain of different processes. The change is usually described by geomagnetic indices and thus it can be expected that these indices would reflect changes in the magnetosheath. The present paper analyzes the relation between geomagnetic activity characterized by changes of the Kp, DST and AE indices and ion flux measured in the night-side magnetosheath. The results suggest a weak dependence of the DST index on the ion flux in the inner magnetosheath that is connected with a magnetopause displacement. On the other hand, fluctuations of the ion flux in the analyzed frequency range do not correlate with any of the indices.  相似文献   

4.
Recently it has been suggested that there exist specific changes in the cosmic ray intensity and some solar and geomagnetic parameters during the days, preceding the hurricane appearances over the North Atlantic Ocean. To understand better these phenomena, data for all hurricanes born not only over the Atlantic but also over the Pacific waters in the last 55 years that hit the Mexican borders were elaborated. As basic hurricane parameters the maximum rotational velocity and the estimated total energy were used. To avoid any interference all hurricanes, overlapping the preceding ones with more than 20 days were not included. Then the behavior of the cosmic ray (CR) intensity, the sunspot (SS) numbers, and the geomagnetic parameters (AP) and (KP) in 35 days prior and 20 days after the cyclone start were investigated. The CR, SS, AP and KP showed much more intensive disturbances in the periods preceding and following the hurricane appearance. For SS this disturbance gradually increase with the hurricane strength. A characteristic peak in the CR intensity appears before the hurricane start. But its place varies between 5 and 20 days before that start. Specific changes were observed in the SS. For major hurricanes they begins sometimes more than 20 days in advance. The AP and the KP show series of bursts, spread over the whole period of 30 preceding days. The obtained results from the performed correlational analysis are enough interesting to motivate a further statistical analysis with more precise techniques: in particular a common periodicity of 30 years found in the number of tropical storms landing into Mexico, the averaged rotational wind velocity and the ACE must be studied in connection with the solar Hale cycle. Using coherence wavelet spectral analysis we present a comparative study between one terrestrial and one cosmophysical phenomena that presumable influence hurricanes development: African dust outbreaks versus cosmic rays for all North Atlantic tropical cyclones. It is shown that the cosmophysical influence cannot be considered as a negligible effect.  相似文献   

5.
6.
The relative importance of the main drivers of positive ionospheric storms at low-mid latitudes is studied using observations and modeling for the first time. In response to a rare super double geomagnetic storm during 07–11 November 2004, the low-mid latitude (17°–48°N geomag. lat.) ionosphere produced positive ionospheric storms in peak electron density (NmF2) in Japan longitudes (≈125°–145°E) on the day of main phase (MP1) onset (06:30 LT) and negative ionospheric storms in American longitudes (≈65°–120°W) on the following day of MP1 onset (13:00–16:00 LT). The relative effects of the main drivers of the positive ionospheric storms (penetrating daytime eastward electric field, and direct and indirect effects of equatorward neutral wind) are studied using the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The model results show that the penetrating daytime (morning–noon) eastward electric field shifts the equatorial ionisation anomaly crests in NmF2 and TEC (total electron content) to higher than normal latitudes and reduces their values at latitudes at and within the anomaly crests while the direct effects of the equatorward wind (that reduce poleward plasma flow and raise the ionosphere to high altitudes of reduced chemical loss) combined with daytime production of ionisation increase NmF2 and TEC at latitudes poleward of the equatorial region; the later effects can be major causes of positive ionospheric storms at mid latitudes. The downwelling (indirect) effect of the wind increases NmF2 and TEC at low latitudes while its upwelling (indirect) effect reduces NmF2 and TEC at mid latitudes. The net effect of all main drivers is positive ionospheric storms at low-mid latitudes in Japan longitude, which qualitatively agrees with the observations.  相似文献   

7.
The study of the possible effect of solar variability on living organisms is one of the most controversial issues of present day science. It has been firstly and mainly carried on high latitudes, while at middle and low latitudes this study is rare. In the present review we focused on the work developed at middle and low geomagnetic latitudes of America. At these geomagnetic latitudes the groups consistently dedicated to this issue are mainly two, one in Cuba and the other in Mexico.  相似文献   

8.
The present work is an attempt to evaluate the impact of changing space weather condition over sub-auroral ionosphere during high solar activity year 2014. In view of this, the GPS based TEC along with Ionosonde data over Indian permanent scientific base “Maitri”, Antarctica (70°46′00″S, 11°43′56″E) has been utilized. The results suggested that the nature of ionospheric responses to the geomagnetic disturbances not only depended upon the status of high latitudinal electro-dynamic processes but also influenced by the seasonal variations. The results revel both negative and positive type of ionospheric response in a single year but during different seasons. The study suggested that the combination of equator-ward plasma transportation along with ionospheric compositional changes causes a negative ionospheric impact especially during summer and equinox seasons. However, the combination of pole-ward contraction of the oval region along with particle precipitation may lead to exhibit positive ionospheric response during the winter season. The plasma transportation direction has been validated with the help of convection boundary (HM boundary) deduced with the help of SuperDARN observations. The ground based ionosonde observations clearly provided the evidence of deep penetration of high energetic particles up to the E-layer heights which results a sudden and strong appearance of E-layer. The strengthening of E-layer is responsible for modification of auroral electrojet and field-aligned current system. Also, the sudden appearance of E-layer along with a decrease in F-layer electron density suggested the dominance of NO+ over O+ in a considered region under geomagnetic disturbed condition.  相似文献   

9.
The precipitation over Tucuman (26.8°S; 65.2°W), which is representative of the Northwestern region of Argentina, is analyzed in search of an association with solar and geomagnetic activity, with the purpose of contributing to the controversial issue on the connection between climate variation and anthropogenic vs. natural forcing. Monthly time series of precipitation, sunspot number (Rz), and aa index were used for the period 1884–2010. A wavelet analysis was performed first which, due to the time series length, shows significant results only for periodicities lower than 32 years. Due to the transient character and non-constant phase of the results, any sustained wavelet coherence between precipitation and either sunspots or aa could be noticed. Moving averages and correlations were also assessed. The 11 and 22-year running mean of precipitation is positively correlated to Rz and aa when the whole period of analysis is considered. However, a shift in the long-term behavior of precipitation is noticed around 1940, which implies different correlation values with Rz and aa when the period before or after this year are considered. The solar cycle length is also considered for this statistical study and partly confirms the results obtained with Rz and aa. We propose plausible physical explanations based on geomagnetic activity and total solar irradiance effects over atmospheric circulation that could support the statistical result. A deeper analysis and broader geographical coverage is needed in order to detect a connection between precipitation and solar variability discernible from greenhouse gases effects. We emphasize the idea of the importance of recognizing and quantifying the different forcing acting on precipitation (or any other climate parameter), which sometimes can be barely evident from a solely statistical analysis.  相似文献   

10.
Classification and quantification of the interplanetary structures causing intense geomagnetic storms (Dst?≤??100?nT) that occurred during 1997–2016 are studied. The subject of this consists of solar wind parameters of seventy-three intense storms that are associated with the southward interplanetary magnetic field. About 30.14% of the storms were driven by a combination of the sheath and ejecta (S?+?E), magnetic clouds (MC) and sheath field (S) are 26% each, 10.96% by combined sheath and MCs (S?+?C), while 5.48% of the storms were driven by ejecta (E) alone. Therefore, we want to aver that for storms driven by: (1) S?+?E. The Bz is high (≥10?nT), high density (ρ) (>10?N/cm3), high plasma beta (β) (>0.8), and unspecified (i.e. high or low) structure of the plasma temperature (T) and the flow speed (V); (2) MC. The Bz is ≥10?nT, low temperature (T?≤?400,000?K), low ρ (≤10?N/cm3), high V (≥450?km), and low β (≤0.8); (3) The structures of S?+?C are similar to that of MC except that the V is low (V?≤?450?km); (4) S. The Bz is high, low T, high ρ, unspecified V, and low β; and (5) E. Is when the structures are directly opposite of the one driven by MCs except for high V. Although, westward ring current indicates intense storms, but the large intensity of geomagnetic storms is determined by the intense nature of the electric field strength and the Bz. Therefore, great storms (i.e. Dst?≤??200?nT) are manifestation of high electric field strength (≥13?mV/m).  相似文献   

11.
This study replicates and extends the observations by Babayev and Allahveriyeva that changes in right hemispheric electroencephalographic activity are correlated with increases in geomagnetic activity. During the geomagnetically quiet interface between solar cycle 23 and 24 quantitative electroencephalographic (QEEG) measurements were completed for normal young adults in three separate experiments involving about 120 samples over 1.5 years. The most consistent, moderate strength correlations occurred for the changes in power within the gamma and theta ranges over the right frontal lobe. Real-time measures of atmospheric power obtained from polar orbiting satellites showed similar effects. The preferential involvement of the right frontal lobe and the regions subject to its inhibition with environmental energetic changes are consistent with the behavioural correlations historically associated with these conditions. They include increased incidence of emotional lability, erroneous reconstruction of experiences, social confrontations, and unusual perceptions.  相似文献   

12.
During extreme solar events such as big flares or/and energetic coronal mass ejections (CMEs) high energy particles are accelerated by the shocks formed in front of fast interplanetary coronal mass ejections (ICMEs). The ICMEs (and their sheaths) also give rise to large geomagnetic storms which have significant effects on the Earth’s environment and human life. Around 14 solar cosmic ray ground level enhancement (GLE) events in solar cycle 23 we examined the cosmic ray variation, solar wind speed, ions density, interplanetary magnetic field, and geomagnetic disturbance storm time index (Dst). We found that all but one of GLEs are always followed by a geomagnetic storm with Dst  −50 nT within 1–5 days later. Most(10/14) geomagnetic storms have Dst index  −100  nT therefore generally belong to strong geomagnetic storms. This suggests that GLE event prediction of geomagnetic storms is 93% for moderate storms and 71% for large storms when geomagnetic storms preceded by GLEs. All Dst depressions are associated with cosmic ray decreases which occur nearly simultaneously with geomagnetic storms. We also investigated the interplanetary plasma features. Most geomagnetic storm correspond significant periods of southward Bz and in close to 80% of the cases that the Bz was first northward then turning southward after storm sudden commencement (SSC). Plasma flow speed, ion number density and interplanetary plasma temperature near 1 AU also have a peak at interplanetary shock arrival. Solar cause and energetic particle signatures of large geomagnetic storms and a possible prediction scheme are discussed.  相似文献   

13.
In recent years several aeromagnetic surveys were carried out in Greenland and more will be carried out in the future. We describe some of the characteristics pertinent to surveys in Greenland and the problems faced and experiences made by the survey teams working there, with special emphasis on the west coast where most surveys were conducted. Both unfavorable terrestrial weather and space weather appear to complicate survey planning. We discuss possible options available to the survey teams for mitigating the adverse effect of part of the problems, namely survey data contamination by intense geomagnetic activity. The implementation of a prototype geomagnetic activity forecast service as an aid to planning survey flights is discussed in more detail. The forecast service was tested by an independent observer, and the performance of the scheme is evaluated by a subsequent comparison between forecast and actual measurements. The comparison rendered largely acceptable results, but their validity is limited by the fact that the two-month test interval was characterized by a mostly relatively quiet magnetic field.  相似文献   

14.
Three “SZ” Atmospheric Composition Detectors (ACDs) on board spacecraft “SZ-2”, “SZ-3” and “SZ-4” were launched on 10th January 2001, 26th March 2002 and 31st December 2002 separately. A large quantity of thermospheric composition data at the orbital altitude ranging from 330 to 362 km were collected from the in-situ measurement of ACDs. The spacecrafts’ lifetime was just in the second peak period of the 23rd solar cycle which includes two peaks and the solar activity value F10.7 was from 89 to 228. During this period, several intense geomagnetic disturbances happened.  相似文献   

15.
The processes leading to enhancements in mid latitude nitric oxide (NO) densities following geomagnetic storms have been investigated using the University College London (UCL) Coupled Middle Atmosphere and Thermosphere (CMAT) general circulation model. A comparison of calculated storm time and quiet time NO densities at 110 km altitude reveals the presence of aurorally produced NO at both high and mid latitudes for several days after subsidence of activity. At 150 km, the NO enhancements are shorter lived and remain for up to approximately 2 days after the storm. By separating the contribution of chemical production and loss, horizontal and vertical advection, and molecular and eddy diffusion in the calculation of NO densities, we show that at 150 km altitude, horizontal transport must be taken into consideration if post-storm mid latitude enhancements are to be reproduced. Chemical production of NO at high latitudes continues for up to 2 days after subsidence of a storm at altitudes of around 150 km. We show that equatorward winds at this altitude are sufficiently strong to transport the aurorally produced NO to mid latitudes. Vertical diffusion transports NO from altitudes of 150 km and above, to lower altitudes where it is longer lived. At 110 km altitude, chemical, diffusive and advective terms must all be included in the calculation of NO density in order to simulate realistic mid latitude enhancements. We propose that it is the combined effects of increased chemical production, downward diffusion from altitudes of 150 km and above, and transport by winds that lead to increases in mid latitude NO density at altitudes of around 110 km. This is the first detailed study of the causes of post-storm mid latitude NO enhancements to use a three-dimensional general circulation model.  相似文献   

16.
Severe geomagnetic storms and their effects on the 557.7 nm dayglow emission are studied in mesosphere. This study is primarily based on photochemical model with the necessary input obtained from a combination of experimental observations and empirical models. The model results are presented for a low latitude station Tirunelveli (8.7°N, 77.8°E). The volume emission rates are calculated using MSISE-90 and NRLMSISE-00 neutral atmospheric models. A comparison is made between the results obtained from these two models. A positive correlation amongst volume emission rate (VER), O, O2 number densities and Dst index has been found. The present results indicate that the variation in emission rate is more for MSISE-90 than in NRLMSISE-00 model. The maximum depletion in the VER of greenline dayglow emission is found to be about 30% at 96 km during the main phase of the one of the geomagnetic storms investigated in the case of MSISE-90 (which is strongest with Dst index −216 nT). The O2 density decreases about 22% at 96 km during the main phase of the same geomagnetic storm.The NRLSMSISE-00 model does not show any appreciable change in the number density of O during any of the two events. The present study also shows that the altitude of peak emission rate is unaffected by the geomagnetic storms. The effect of geomagnetic storm on the greenline nightglow emission has also been studied. It is found that almost no correlation can be established between the Dst index and variations in the volume emission rates using the NRLMSISE-00 neutral model atmosphere. However, a positive correlation is found in the case of MSISE-90 and the maximum depletion in the case of nightglow is about 40% for one of the storms. The present study shows that there are significant differences between the results obtained using MSISE-90 and NRLMSISE-00.  相似文献   

17.
Responses of low-latitude ionospheric critical frequency of F2 layer to geomagnetic activities in different seasons and under different levels of solar activity are investigated by analyzing the ionospheric foF2 data from DPS-4 Digisonde in Hainan Observatory during 2002–2005. The results are as follows: (1) the response of foF2 to geomagnetic activity in Hainan shows obvious diurnal variation except for the summer in low solar activity period. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime. The intensity of response of foF2 is stronger at nighttime than that at daytime; (2) seasonal dependence of the response of foF2 to geomagnetic activity is very obvious. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter; (3) the solar cycle has important effect on the response of foF2 to geomagnetic activity in Hainan. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only; (4) the local time of geomagnetic activities occurring also has important effect on the responses of foF2 in Hainan. Generally, geomagnetic activities occurred at nighttime can cause stronger and longer responses of foF2 in Hainan.  相似文献   

18.
During the first half of November 2004, many solar flares and coronal mass ejections (CMEs) were associated with solar active region (AR) 10696. This paper attempts to identify the solar and interplanetary origins of two superstorms which occurred on 8 and 10 November with peak intensities of Dst = −373 nT and −289 nT, respectively. Southward interplanetary magnetic fields within a magnetic cloud (MC), and a sheath + MC were the causes of these two superstorms, respectively. Two different CME propagation models [Gopalswamy, N., Yashiro, S., Kaiser, M.L. et al. Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207–29219, 2001; Gopalswamy, N.S., Lara, A., Manoharan, P.K. et al. An empirical model to predict the 1-AU arrival of interplanetary shocks. Adv. Space Res. 36, 2289–2294, 2005] were employed to attempt to identify the solar sources. It is found that the models identify several potential CMEs as possible sources for each of the superstorms. The two Gopalswamy et al. models give the possible sources for the first superstorm as CMEs on 2330 UT 4 November 2004 or on 1454 UT 5 November 2004. For the second superstorm, the possible solar source was a CME that on 0754 UT 5 November 2004 or one that occurred on 1206 UT 5 November 2004. We note that other propagation models sometimes agree and other times disagree with the above results. It is concluded that during high solar/interplanetary activity intervals such as this one, the exact solar source is difficult to identify. More refined propagation models are needed.  相似文献   

19.
Three major hypotheses have been proposed to explain the well-known semiannual variation of geomagnetic activity, maxima at equinoxes and minima at solstices. This study examined whether the seasonal variation of equinoctial geomagnetic activity is different in periods of opposite solar magnetic polarity in order to understand the contribution of the interplanetary magnetic field (IMF) in the Sun-Earth connection. Solar magnetic polarity is parallel to the Earth’s polarity in solar minimum years of odd/even cycles but antiparallel in solar minimum years of even/odd cycles. The daily mean of the aa, Aa indices during each solar minimum was compared for periods when the solar magnetic polarity remained in opposite dipole conditions. The Aa index values were used for each of the three years surrounding the solar minimum years of the 14 solar cycles recorded since 1856. The Aa index reflects seasonal variation in geomagnetic activity, which is greater at the equinoxes than at the solstices. The Aa index reveals solar magnetic polarity dependency in which the geomagnetic activity is stronger in the antiparallel solar magnetic polarity condition than in the parallel one. The periodicity in semiannual variation of the Aa index is stronger in the antiparallel solar polar magnetic field period than in the parallel period. Additionally, we suggest the favorable IMF condition of the semiannual variation in geomagnetic activity. The orientation of IMF toward the Sun in spring and away from the Sun in fall mainly contributes to the semiannual variation of geomagnetic activity in both antiparallel and parallel solar minimum years.  相似文献   

20.
The occurrence rate of SAR arcs during 1997–2007 has been analyzed based on the photometric observations at the Yakutsk meridian (Maimaga station, corrected geomagnetic coordinates: 57°N, 200°E). SAR arcs appeared in 114 cases (∼500 h) during ∼370 nights of observations (∼3170 h). The occurrence frequency of SAR arcs increases to 27% during the growth phase of solar activity and has a clearly defined maximum at a decline of cycle 23. The SAR arc registration probability corresponds to the variations in geomagnetic activity in this solar cycle. The dates, intervals of UT, and geomagnetic latitudes of SAR arc observations at the Yakutsk meridian are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号