首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
It is the primary task for a bioregenerative life support system (BLSS) to maintain the stable concentrations of CO2 and O2. However, these concentrations could fluctuate based on various factors, such as the imbalance between respiration/assimilation quotients of the heterotrophic and autotrophic components. They can even be out of balance through catastrophic failure of higher plants in the emergency conditions. In this study, the feasibility of using unicellular Chlorella vulgaris of typically rapid growth as both “compensatory system” and “regulator” to control the balance of CO2 and O2 was analyzed in a closed ecosystem. For this purpose, a small closed ecosystem called integrative experimental system (IES) was established in our laboratory where we have been conducting multi-biological life support system experiments (MLSSE). The IES consists of a closed integrative cultivating system (CICS) and a plate photo-bioreactor. Four volunteers participated in the study for gas exchange by periodical breathing through a tube connected with the CICS. The plate photo-bioreactor was used to cultivate C. vulgaris. Results showed that the culture of C. vulgaris could be used in a situation of catastrophic failure of higher plant under the emergencies. And the productivity could recover itself to the original state in 3 to 5 days to protect the system till the higher plant was renewed. Besides, C. vulgaris could grow well and the productivity could be affected by the light intensity which could help to keep the balance of CO2 and O2 in the IES efficiently. Thus, C. vulgaris could be included in the design of a BLSS as a “compensatory system” in the emergency contingency and a “regulator” during the normal maintenance.  相似文献   

2.
The first unambiguous identification of ammonia in the upper atmosphere of Jupiter has been obtained from the observation of individual NH3 bands in an IUE high resolution spectrum in the 2100–2400 Å spectral range. The variation with wavelength of the strengths of these NH3 bands implies that the NH3 abundance has to be strongly reduced by photolysis in the upper jovian atmosphere. Preliminary analysis by means of scattering models shows that the ammonia mixing ratio cannot be constant with altitude. The mixing ratio NH3/H2 ranges from 5 10?8 to 5 10?7 at the 250 mb pressure level, and decreases as P or P2 toward higher altitudes.  相似文献   

3.
Calculations are presented of the vibrational distribution of O2+ in the Venusian ionosphere for a model atmosphere based on Pioneer Venus data. At 100 km, quenching precludes the survival of vibrationally excited O2+. At the exobase, near 200 km, more than half are vibrationally excited. The effects of vibrationally excited O2+ on the hot oxygen corona and the airglow are discussed.  相似文献   

4.
What is the influence of hydrogen escape from the atmosphere of small planetary bodies on the synthesis of organic molecules in that atmosphere? To answer this question, laboratory experiments have been performed to study the evolution of different reducing model atmospheres submitted to electrical discharges, with and without the simulation of H2 escape. A study of mixtures of nitrogen and methane shows a very strong effect of H2 escape on the formation of organic nitriles, the only nitrogen containing organics detected in the gas phase. These are HCN, CH  CCN, (CN)2, CH2CHCN, CH3 CN and CH3CH2CN. The yield of synthesis of most of these compounds is noticeably increased, up to several orders of magnitude, when hydrogen escape is simulated. The escape of H2 from the atmosphere of the primitive Earth may have played a crucial role in the formation of reactive organic molecules such as CHCCN or (CN)2, which can be considered as important prebiotic precursors. These experimental results may also explain extant data concerning the nature and relative abundance of organics present in the atmosphere of Titan, a planetary satellite which may be an ideal model within our solar system for the study of organic cosmochemistry and exobiology.  相似文献   

5.
The ability to generate O2 and absorb CO2 of several co-cultured vegetable plants in an enclosed system was studied to provide theoretical reference for the future man-plant integrated tests. Four kinds of salad plants (Lactuca sativa L. var. Dasusheng, Lactuca sativa L. var. Youmaicai, Gynura bicolor and Cichorium endivia L.) were grown in the CELSS Integration Test Platform (CITP). The environmental factors including O2 and CO2 concentration were continuously monitored on-line and the plant biomass was measured at the end of the test. The changing rules of O2 and CO2 concentration in the system were basically understood and it was found that the O2 generated by the plants could satisfy the respiratory needs of 1.75 persons by calculation. It was also found that the plants could absorb the CO2 breathed out by 2 persons when the light intensity was raised to 550 mmol m−2 s−1 PPF. The results showed that the co-cultured plants hold good compatibility and excellent O2-generating and CO2-absorbing capability. They could also supply some fresh edible vegetable for a 2-person crew.  相似文献   

6.
Based on the purpose of better exploring the function of green producers in the closed aquatic biological life support system, the condition of dynamic O2 evolution and performance of cyclic electron flow around photosystem I (CEF-PSI) in long-term ground batch culture of Euglena gracilis were studied, the relationship between linear electron flow (LEF) and CEF-PSI was revealed, the function of CEF-PSI was investigated. Excellent consistency in O2 evolution pattern was observed in cultures grown in both closed and open containers, O2 evolution was strictly suppressed in phase 1, but the rate of it increased significantly in phase 2. CEF-PSI was proposed to be active during the whole course of cultivation, even in the declining phase 3, it still operated at the extent of 47–55%. It is suggested that the relationship between LEF and CEF-PSI is not only competition but also reciprocity. CEF-PSI was proposed to contribute to the considerable growth in phase 1; it was also suggested to play an important protective role against photosystem II (PSII) photoinhibition at the greatly enhanced level (approximately 80–95%) on the 2nd day. Our results in this research suggest that E. gracilis had very particular photosynthetic characteristics, the strict O2 evolution suppression in the initial culture phase might be a special light acclimation behavior, and CEF-PSI could be an important mechanism involved in this kind of adaptation to the changeable light environment.  相似文献   

7.
Gas exchange between man and plants in a closed ecological system based on atmosphere regeneration by plant photosynthesis is made consistent by attaining the equilibrium of human CO2 discharge and the productivity of the gas consuming bioregenerator. In this case the gas exchange might be, however, qualitatively disturbed from the equilibrium in terms of oxygen making it accumulate or decrease continuously in the air of the system. Gas exchange equilibrium in terms of O2 was attained in long-term experiments by equality of the human respiration coefficient and the plant assimilation coefficient. Varying the ratio of these parameters it is possible to control the oxygen concentration in the atmosphere to be reclaimed.  相似文献   

8.
null   总被引:2,自引:0,他引:2  
研究了Nb离子注入的γ-TiAl合金在1123K和1173K空气中的高温循环氧化行为,用配有能谱仪的扫描电子显微镜对氧化层的形貌、显微结构进行了分析,用俄歇谱仪分析了注入元素和氧化层中各元素的分布.结果表明:Nb离子注入可以提高γ-TiAl合金的抗循环氧化性能.提高其抗氧化性能的主要原因归结于Nb离子在TiO2中的掺杂作用.高价Nb的掺杂,降低了TiO2的缺陷浓度,使TiO2的生长受到抑制,在氧化初期形成了Al2O3保护层,从而推迟了氧化层的剥落时间.但Nb离子注入的γ-TiAl合金不具有长期的抗循环氧化性能.  相似文献   

9.
The purpose of the Nimbus 7 LIMS experiment was to sound the composition and structure of the upper atmosphere and provide data for study of photochemistry, radiation, and dynamics processes. Vertical profiles were measured of temperature and ozone (O3) over the 10-km to 65-km range and water vapor (H2O), nitrogen dioxide (NO2), and nitric acid (HNO3) over the 10-km to ~50-km range. Latitude coverage extended from 64°S to 84°N. Several general features of the atmosphere have emerged from data analyses thus far. Nitrogen dioxide exhibits rapid latitudinal variations in winter and shows hemispheric asymmetry with generally higher vertical column amount in the summer hemisphere. HNO3 data show that this gas is highly variable with altitude, latitude, and season. Smallest mixing ratios occur in the tropics, and the largest values occur in the high latitude winter hemisphere. The results show that O3, NO2, and HNO3 are strongly affected during a stratospheric warming. There is a persistently low water vapor mixing ratio in the tropical lower stratosphere (~2–3 ppmv), a poleward gradient at all times in the mission, and evidence of increasing mixing ratio with altitude at tropical and middle latitudes.  相似文献   

10.
Our current knowledge on the composition of the Venus atmosphere in the altitude range from the surface to 100 km is compiled. Gases that have been measured, and whose mixing ratios are assumed to be constant with altitude, are CO2, N2, He, Ne, Ar, and Kr. Gases that have been identified in the lower and/or middle atmosphere, but whose mixing ratios may depend on altitude, latitude and/or local time, are CO, H2O, HCl, HF, and SO2. Conflicting data or only upper limits exist on some important trace gases, such as O2, H2, and Cl2. The latter two are key constituents in the photochemistry of the middle atmosphere of Venus. The chapter concludes with a listing of the isotopic abundances of elements measured in the Venus atmosphere.  相似文献   

11.
一种单喷嘴推力室燃烧内流场的方法   总被引:4,自引:0,他引:4  
为了方便开展单喷嘴气气喷注器燃烧试验研究,设计了一种燃烧室壁面测温,并结合推力室燃烧流场的非稳态数值模拟的方法,以考察燃烧室内流场的发展和燃烧完成情况.应用试验数据对不同的湍流模型和燃烧模型进行了对比研究,得到与试验结果较为吻合的计算模型.并应用该方法开展了同轴剪切式喷注器氢/氧喷注动量比、燃烧室压力变化的试验研究.试验结果表明喷注器掺混燃烧效果随氢/氧喷注动量比增加而增强,而不随燃烧室压力的变化而变化.  相似文献   

12.
An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California worms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogenic elements, shows an almost 100% closure of the cycle inside the system. The proposed experimental model of a biological system is discussed as a candidate for potential application in the investigations aimed at creating ecosystems with largely closed cycles of the internal mass exchange. The formation and maintenance of sustainable cycling of vitally important chemical elements and compounds in biological life support systems (BLSS) is an extremely pressing problem. To attain the stable functioning of biological life support systems (BLSS) and to maintain a high degree of closure of material cycles in than, it is essential to understand the character of mass exchange processes and stoichiometnc proportions of the initial and synthesized components of the system.  相似文献   

13.
Azolla shows high growth and propagation rates, strong photosynthetic O2-releasing ability and high nutritional value. It is suitable as a salad vegetable and can be cultured on a multi-layered wet bed. Hence, it possesses potential as a fresh vegetable, and to release O2 and absorb CO2 in a Controlled Ecological Life Support System in space. In this study, we investigated the O2-providing characteristics of Azolla in a closed chamber under manned, controlled conditions to lay a foundation for use of Azolla as a biological component in ground simulation experiments for space applications. A closed test chamber, representing a Controlled Ecological Life Support System including an Azolla wet-culture device, was built to measure the changes in atmospheric O2 and CO2 concentrations inside the chamber in the presence of coexisting Azolla, fish and men. The amount of O2 consumed by fish was 0.0805–0.0831 L kg−1 h−1 and the level of CO2 emission was 0.0705–0.0736 L kg−1 h−1; O2 consumption by the two trial volunteers was 19.71 L h−1 and the volume of respiration-released CO2 was 18.90 L h−1. Under 7000–8000 Lx artificial light and Azolla wet-culture conditions, human and fish respiration and Azolla photosynthesis were complementary, thus the atmospheric O2 and CO2 concentrations inside chamber were maintained in equilibrium. The increase in atmospheric CO2 concentration in the closed chamber enhanced the net photosynthesis efficiency of the Azolla colony. This study showed that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2 and CO2 concentrations inside the chamber in favor of human survival and verifies the potential of Azolla for space applications.  相似文献   

14.
Ozone (O3) and sulfur dioxide (SO2) in a vertical column of the atmosphere in Thailand were obtained from the Brewers#121 and #120. There are similarities between the O3 patterns obtained from the two sites, which are higher in the summer and rainy season compared with winter, although the magnitude of the change in Bangkok is greater than that in Songkhla. SO2 values showed the summer months provide the higher SO2 values in Bangkok, in contrast to Songkhla where the summer months give lower SO2 values.  相似文献   

15.
The diurnal tide in the mesosphere and lower thermosphere (MLT) shows large seasonal and interannual variations. Despite recent modeling investigations, the underlying physical mechanisms for causing these variations remain unclear. This paper provides further observational constraints to tide-sensitive variables (H2O, O3, and gravity wave variances) used by the models, which are obtained simultaneously by upper atmosphere research satellite microwave limb sounder at altitudes below the MLT region. The strong quasi biannual oscillation and semiannual oscillation variations in these measurements reveal good correlations between the diurnal tide with other tide-sensitive variables, which should be taken into account for further modeling studies.  相似文献   

16.
Beyond their role in the cycling of the major elements, carbon, nitrogen, oxygen, etc., little is known about geobiological interactions involving plants with the elements of lower abundance. Plants influence the distribution of volcanic mercury by uptake from the atmosphere and soil fluids, transport to the shoot and re-release as Hg° into the atmosphere. Release rates as high as 2.5 × 10?4 g.h?1 per kg are known but even at more typical rates, fluxes far greater than the Environmental Protection Agency calculated U.S. average annual degassing rate of 130 × 10?6 g.m?2 should exist. On a global basis, the presence or absence of vegetative cover may be a significant regulator of Hg° transport between land surfaces and the atmosphere.  相似文献   

17.
18.
The detection of CH4 frost on Pluto's surface implies a significant atmosphere for Pluto. Although Pluto's mass is small, about 7% of Triton's mass, the rapid escape (“blowoff”) of gaseous CH4 can be prevented by the presence of a heavy gas mixed with the CH4. The resulting slow escape (“Jeans escape”) of CH4 can be accomodated by sublimation of the surface CH4 frost so that an atmosphere exists in the steady state. A heavier gas must exist, otherwise the CH4 frost would have sublimated away long ago because of solar heat and rapid blowoff of gaseous CH4. Pluto is currently near perihelion where the CH4 component of the atmosphere may be 500 times denser than at apehelion. Significant seasonal changes in the atmospheric bulk are therefore possible. Currently, the CH4 column abundance on Pluto's sunlit hemisphere is on the order of 1 m-Amagat. The abundance of the heavier gas should be at least an order of magnitude greater but is uncertain.  相似文献   

19.
Pressure increased during net photosynthetic O2 production in the light and decreased during respiratory O2 uptake during the dark in aquatic Closed Ecological Systems (CESs) with small head gas volumes. Because most CO2 will be in the liquid phase as bicarbonate and carbonate anions, and CO2 is more soluble than O2, volumes of gaseous CO2 and gaseous O2 will not change in a compensatory manner, leading to the development of pressure. Pressure increases were greatest with nutrient rich medium with NaHCO3 as the carbon source. With more dilute media, pressure was greatest with NaHCO3, and less with cellulose or no-added carbon. Without adequate turbulence, pressure measurements lagged dissolved O2 concentrations by several hours and dark respiration would have been especially underestimated in our systems (250–1000 ml). With adequate turbulence (rotary shaker), pressure measurements and dissolved O2 concentrations generally agreed during lights on/off cycles, but O2 measurements provided more detail. At 20 °C, 29.9 times as much O2 will distribute into the gas phase as in the liquid, per unit volume, as a result of the limited solubility of O2 in water and according to Henry’s Law. Thus even a small head gas volume can contain more O2 than a larger volume of water. When both dissolved and gaseous O2 and CO2 are summed, the changes in Total O2 and CO2 are in relatively close agreement when NaHCO3 is the carbon source. These findings disprove an assumption made in some of Taub’s earlier research that aquatic CESs would remain at approximately atmospheric pressure because approximately equal molar quantities of O2 and CO2 would exchange during photosynthesis and respiration; this assumption neglected the distribution of O2 between water and gas phases. High pressures can occur when NaHCO3 is the carbon source in nutrient rich media and if head-gas volumes are small relative to the liquid volume; e.g., one “worse case” condition developed 800 mm Hg above atmospheric pressure and broke the glass container. Plastic screw cap closures are likely to leak at high pressures and should not be assumed to seal unless tested at appropriate pressures. Pressure can be reduced by having larger head-gas volumes and using less concentrated nutrient solutions. It is important that pressure changes be considered for both safety and closure, and if total O2 is used as the measure of net photosynthesis and respiration, the O2 in the gas phase must be added to the dissolved O2.  相似文献   

20.
As part of a Bio-regenerative Life Support System (BLSS) for long-term space missions, plants will likely be grown at reduced pressure. This low pressure will minimize structural requirements for growth chambers on missions to the Moon or Mars. However, at reduced pressures the diffusivity of gases increases. This will affect the rates at which CO2 is assimilated and water is transpired through stomata. To understand quantitatively the possible effects of reduced pressure on plant growth, CO2 and H2O transport were calculated for atmospheres of various total pressures (101, 66, 33, 22, 11 kPa) and CO2 concentrations (0.04, 0.1 and 0.18 kPa). The diffusivity of a gas is inversely proportional to total pressure and shows dramatic increases at pressures below 33 kPa (1/3 atm). A mathematical relationship based on the principle of thermodynamics was applied to low pressure conditions and can be used for calculating the transpiration and photosynthesis of plants grown in hypobaria. At 33 kPa total pressure, the stomatal conductance increases by a factor of three with the boundary layer conductance increasing by a factor of ∼1.7, since the leaf conductance is a function of both stomatal and the boundary layer conductance, the overall conductance will increase resulting in significantly higher levels of transpiration as the pressure drops. The conductance of gases is also regulated by stomatal aperture in an inverse relationship. The higher CO2 concentration inside the leaf air space during low pressure treatments may result in higher CO2 assimilation and partial stomata closure, resulting in a decrease in transpiration rate. The results of this analysis offer guidelines for experiments in pressure and high CO2 environments to establish ideal conditions for minimizing transpiration and maximizing the plant biomass yield in BLSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号