首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this study, we evaluate Sentinel-3A satellite synthetic aperture radar (SAR) altimeter observations along the Northwest Atlantic coast, spanning the Nova Scotian Shelf, Gulf of Maine, and Mid-Atlantic Bight. Comparisons are made of altimeter sea surface height (SSH) measurements from three different altimeter data processing approaches: fully-focused synthetic aperture radar (FFSAR), un-focused SAR (UFSAR), and conventional low-resolution mode (LRM). Results show that fully-focused SAR data always outperform LRM data and are comparable or slightly better than the nominal un-focused SAR product. SSH measurement noise in both SAR-mode datasets is significantly reduced compared to LRM. FFSAR SSH 20-Hz noise levels, derived from 80-Hz FFSAR data, are lower than 20-Hz UFSAR SSH with 25% noise reduction offshore of 5 km, and 55–70% within 5 km of the coast. The offshore noise improvement is most likely due to the higher native along-track data posting rate (80 Hz for FFSAR, and 20 Hz for UFSAR), while the large coastal improvement indicates an apparent FFSAR data processing advantage approaching the coastlines. FFSAR-derived geostrophic ocean current estimates exhibit the lowest bias and noise when compared to in situ buoy-measured currents. Assessment at short spatial scales of 5–20 km reveals that Sentinel-3A SAR data provide sharper and more realistic measurement of small-scale sea surface slopes associated with expected nearshore coastal currents and small-scale gyre features that are much less well resolved in conventional altimetric LRM data.  相似文献   

2.
The differences between coastal altimetry and sea level time series of tide gauges in between March 1993 and December 2009 are used to estimate the rates of vertical land motion at three tide gauge locations along the southwestern coasts of Turkey. The CTOH/LEGOS along-track coastal altimetry retrieves altimetric sea level anomalies closer to the coast than the standard along-track altimetry products. However, the use of altimetry very close to the coast is not found to improve the results. On the contrary, the gridded and interpolated AVISO merged product exhibits the best agreement with tide gauge data as it provides the smoothest variability both in space and time compared with along track altimetry data. The Antalya gauge to the south (in the Mediterranean Sea) and the Mentes/Izmir gauge to the west (in the Aegean Sea) both show subsidence while the Bodrum tide gauge to the south (in the Aegean Sea) shows no significant vertical land motion. The results are compared and assessed with three independent geophysical vertical land motion estimates like from GPS. The GIA effect in the region is negligible. The VLM estimates from altimetry and tide gauge data are in good agreement both with GPS derived vertical velocity estimates and those inferred from geological and archaeological investigations.  相似文献   

3.
In the context of the ESA Climate Change Initiative project, a new coastal sea level altimetry product has been developed in order to support advances in coastal sea level variability studies. Measurements from Jason-1,2&3 missions have been retracked with the Adaptive Leading Edge Subwaveform (ALES) Retracker and then ingested in the X-TRACK software with the best possible set of altimetry corrections. These two coastal altimetry processing approaches, previously successfully validated and applied to coastal sea level research, are combined here for the first time in order to derive a 16-year-long (June 2002 to May 2018), high-resolution (20-Hz), along-track sea level dataset in six regions: Northeast Atlantic, Mediterranean Sea, West Africa, North Indian Ocean, Southeast Asia and Australia. The study demonstrates that this new coastal sea level product called X-TRACK/ALES is able to extend the spatial coverage of sea level altimetry data ~3.5 km in the land direction, when compared to the X-TRACK 1-Hz dataset. We also observe a large improvement in coastal sea level data availability from Jason-1 to Jason-3, with data at 3.6 km, 1.9 km and 0.9 km to the coast on average, for Jason-1, Jason-2 and Jason-3, respectively. When combining measurements from Jason-1 to Jason-3, we reach a distance of 1.2–4 km to the coast. When compared to tide gauge data, the accuracy of the new altimetry near-shore sea level estimations also improves. In terms of correlations with a large set of independent tide gauge observations selected in the six regions, we obtain an average value of 0.77. We also show that it is now possible to derive from the X-TRACK/ALES product an estimation of the ocean current variability up to 5 km to the coast. This new altimetry dataset, freely available, will provide a valuable contribution of altimetry in coastal marine research community.  相似文献   

4.
Satellite altimetry provides continuous and spatially regular measurements of the height of the sea surface. Sea level responds to density changes of the water, to mass changes, due to addition or reduction of water mass, and to changes in the atmosphere above it. The present study examines the influence of atmospheric effects on sea-level variability in the North-East Atlantic. The association between the height of the sea surface and the North Atlantic Oscillation (NAO) is investigated by considering different sets of altimetry measurements for which the atmospheric effects have been handled differently. Altimetry data not corrected for atmospheric effects are strongly anti-correlated with the state of the NAO, reflecting the hydrostatic response of sea-level to the NAO pressure dipole. The application of an atmospheric correction to satellite altimetry observations in the NE Atlantic decreases variability of the height time series by more than 70% and reduces the amplitude of the seasonal cycle by ∼5 cm. Altimetry data for which atmospheric effects are removed via an inverse barometer correction show a non-negligible correlation with the NAO index at some locations suggesting further indirect non-hydrostatic influences of the state of the NAO on sea level variability.  相似文献   

5.
6.
We demonstrate in this work how we can take advantage of known unfocused SAR (UF-SAR) retracking methods (e.g. the physical SAMOSA model) for retracking of fully-focused SAR (FF-SAR) waveforms. Our insights are an important step towards consistent observations of sea surface height, significant wave height and backscatter coefficient (wind speed) with both UF-SAR and FF-SAR. This is of particular interest for SAR altimetry in the coastal zone, since coastal clutter may be filtered out more efficiently in the high-resolution FF-SAR waveform data, which has the potential to improve data quality. We implemented a multi-mission FF-SAR altimetry processor for Sentinel-3 (S3) and Sentinel-6 Michael Freilich (S6), using a back-projection algorithm, and analysed ocean waveform statistics compared to multilooked UF-SAR. We find for Sentinel-3 that the averaged power waveforms of UF-SAR and FF-SAR over ocean are virtually identical, while for Sentinel-6 the FF-SAR power waveforms better resemble the UF-SAR zero-Doppler beam. We can explain and model the similarities and differences in the data via theoretical considerations of the waveform integrals. These findings suggest to use the existing UF-SAR SAMOSA model for retracking S3 FF-SAR waveforms but the SAMOSA zero-Doppler beam model for S6 FF-SAR waveforms, instead. Testing the outlined approach over short track segments, we obtain range biases between UF-SAR and FF-SAR lower than 2 mm and significant wave height biases lower than 5 cm.  相似文献   

7.
Optimal interpolation methods for improving the reconstruction of coastal dynamics from along-track satellite altimetry measurements have been recently developed over the North Western Mediterranean Sea. Maps of satellite-derived geostrophic current anomalies are generated using these methods, and added to different mean circulation fields in order to obtained absolute geostrophic currents. The resulting fields are then compared to standard AVISO products, and their accuracies are assessed with Lagrangian diagnostics. The trajectories of virtual particle clusters are simulated with a Lagrangian code either with new current fields or with the AVISO ones. The simulated trajectories are then compared to 16 in situ drifter trajectories to evaluate the performance of the different velocity fields. The comparisons show that the new current fields lead to better results than the AVISO one, especially over the shallow continental shelf of the Gulf of Lion. However, despite the use of innovative strategies, some altimetry limitations still persist in the coastal domain, where small scale processes remain sub-sampled by conventional altimetry coverage but will benefit from technological development in the near future. Some of the limitations of the Lagrangian diagnostics presently used are also analyzed, but dedicated studies will be required for future further investigations.  相似文献   

8.
Lake water height is a key variable in water cycle and climate change studies, which is achievable using satellite altimetry constellation. A method based on data processing of altimetry from several satellites has been developed to interpolate mean lake surface (MLS) over a set of 22 big lakes distributed on the Earth. It has been applied on nadir radar altimeters in Low Resolution Mode (LRM: Jason-3, Saral/AltiKa, CryoSat-2) in Synthetic Aperture Radar (SAR) mode (Sentinel-3A), and in SAR interferometric (SARin) mode (CryoSat-2), and on laser altimetry (ICESat). Validation of the method has been performed using a set of kinematic GPS height profiles from 18 field campaigns over the lake Issykkul, by comparison of altimetry’s height at crossover points for the other lakes and using the laser altimetry on ICESat-2 mission. The precision reached ranges from 3 to 7 cm RMS (Root Mean Square) depending on the lakes. Currently, lake water level inferred from satellite altimetry is provided with respect to an ellipsoid. Ellipsoidal heights are converted into orthométric heights using geoid models interpolated along the satellite tracks. These global geoid models were inferred from geodetic satellite missions coupled with absolute and regional anomaly gravity data sets spread over the Earth. However, the spatial resolution of the current geoid models does not allow capturing short wavelength undulations that may reach decimeters in mountaineering regions or for rift lakes (Baikal, Issykkul, Malawi, Tanganika). We interpolate in this work the geoid height anomalies with three recent geoid models, the EGM2008, XGM2016 and EIGEN-6C4d, and compare them with the Mean Surface of 22 lakes calculated using satellite altimetry. Assuming that MLS mimics the local undulations of the geoid, our study shows that over a large set of lakes (in East Africa, Andean mountain and Central Asia), short wavelength undulations of the geoid in poorly sampled areas can be derived using satellite altimetry. The models used in this study present very similar geographical patterns when compared to MLS. The precision of the models largely depends on the location of the lakes and is about 18 cm, in average over the Earth. MLS can serve as a validation dataset for any future geoid model. It will also be useful for validation of the future mission SWOT (Surface Water and Ocean Topography) which will measure and map water heights over the lakes with a high horizontal resolution of 250 by 250 m.  相似文献   

9.
针对传统GPS C/A码延迟测高方法测高精度低和互相关测高方法时延波形信噪比低的问题,研究了基于半无码的P(Y)码自相关海面测高方法。首先,通过理论测高精度模型,对比分析了C/A码和P(Y)码的测高精度;然后,描述了L1、L2双频反射信号基于半无码的P(Y)码自相关处理架构,并论述了测高模型和L1、L2双频电离层时延误差修正方法;最后,利用模拟的L1、L2反射信号对比分析了基于半无码的P(Y)码自相关、C/A码自相关以及信号互相关方法的海面测高精度。结果表明:相比于C/A码自相关和信号互相关测高精度,基于半无码的P(Y)码自相关的测高精度分别提高了3.97倍和1.47倍。   相似文献   

10.
In this study we present an analytical formulation of synthetic-aperture radar (SAR) altimetry signals including narrow banded nonlinear wave fields and conditional statistics between wave elevation displacements, horizontal wave slopes and vertical wave particle velocities. Considering the wave elevation displacements coskewness with respect to horizontal slopes leads to an analytical formulation of the electromagnetic bias within a SAR-mode altimeter stack. This formulation can be either parametrized by the significant wave height (SWH) and mean wave steepness, or in terms of the variance of vertical wave velocities. The effect of conditional vertical wave particle velocity variances with respect to the observed horizontal wave slopes close to nadir incidence angles leads to an effective reduction of the azimuth blurring of SAR-mode stacks. We present here a formulation of this effect by examining JONSWAP ocean wave spectra. In most cases this effect reduces the azimuth blurring by 10% to 30%. Additionally we investigate the effect of a nonlinear wave elevation displacement probability density function (PDF) on estimated geophysical parameters. We were able to show that including an elevation displacement skewness of 0.13 improves significantly the SWH consistency between altimetry and ECMWF Reanalysis v5 ERA5 results.All of these effects are validated with respect to ERA5 model data in the North East Atlantic region and in situ data located in the German Bight and Baltic Sea.The developed model can be used in both SAR and conventional altimetry retrackers.  相似文献   

11.
The paper explores a method to obtain accurate lake surface heights using measurements of the Global Navigation Satellite System (GNSS) carrier phase reflected from the lake surface. The method is referred to as Global Navigation Satellite System-Reflection (GNSS-R) open-loop difference phase altimetry method. It consists of two key technologies: one is the open-loop tracking method to track the GNSS-R signals, where the direct GNSS signal’s frequency is used as a reference frequency to obtain the carrier phases of the GNSS-R signals; the other key technology is time difference phase altimetry method to invert the lake surface heights using two or more carrier phases of GNSS-R signals received simultaneously. A validation experiment is carried out on the SANYING bridge over GUANTING lake using a GNSS-R receiver developed by the Center for Space Science and Applied Research (CSSAR), processing the data with GNSS-R open-loop difference phase altimetry method. The lake surface height results are consistent with the height results of GPS dual-frequency differential positioning altimetry. The results show that we can achieve centimeter level height in one minute average, by using 11 minutes carrier phase data of three GNSS-R signals received simultaneously.  相似文献   

12.
Remote sensing using GNSS signals: Current status and future directions   总被引:1,自引:0,他引:1  
The refracted, reflected and scattered signals of global navigation satellite systems (GNSS) have been successfully used to remotely sense the Earth’s surface and atmosphere. It has demonstrated its potential to sense the atmosphere and ionosphere, ocean, land surfaces (including soil moisture) and the cryosphere. These new measurements, although in need of refinement and further validation in many cases, can be used to complement existing techniques and sensors, e.g., radiosonde, ionosonde, radar altimetry and synthetic aperture radar (SAR). This paper presents the current status and new developments of remote sensing using GNSS signals as well as its future directions and applications. Some notable emerging applications include monitoring sea ice, dangerous sea states, ocean eddy and storm surges. With the further improvement of the next generation multi-frequency GNSS systems and receivers and new space-based instruments utilizing GNSS reflections and refractions, new scientific applications of GNSS are expected in various environment remote sensing fields in the near future.  相似文献   

13.
Long-term change of the global sea level resulting from climate change has become an issue of great societal interest. The advent of the technology of satellite altimetry has modernized the study of sea level on both global and regional scales. In combination with in situ observations of the ocean density and space observations of Earth’s gravity variations, satellite altimetry has become an essential component of a global observing system for monitoring and understanding sea level change. The challenge of making sea level measurements with sufficient accuracy to discern long-term trends and allow the patterns of natural variability to be distinguished from those linked to anthropogenic forcing rests largely on the long-term efforts of altimeter calibration and validation. The issues of long-term calibration for the various components of the altimeter measurement system are reviewed in the paper. The topics include radar altimetry, the effects of tropospheric water vapor, orbit determination, gravity field, tide gauges, and the terrestrial reference frame. The necessity for maintaining a complete calibration effort and the challenges of sustaining it into the future are discussed.  相似文献   

14.
GNSS-R干涉测高技术可用于中尺度海面高度观测,具有空间分辨率高、测量精度高等优势。与传统的GNSS-R本地码测高技术相比,GNSS-R干涉测高技术可以有效提升高度测量精度。虽然GNSS-R干涉测高技术已有一些研究,但是基于北斗三号的干涉测高应用还很少。本文根据GNSS-R干涉测高技术优势,针对北斗三号系统在干涉测高技术上的应用,研发了支持北斗三号的GNSS-R干涉测高接收机并描述了整体架构及实现。利用所研发的接收机进行水面干涉测高试验,首次获取了北斗三号B1和B2干涉测高波形,与传统GPS L1和北斗B1本地码测高波形进行对比。对两种方法计算出的水面高度进行对比,结果显示北斗三号干涉测高精度明显优于GPS L1和北斗B1传统本地码测高精度。   相似文献   

15.
This paper presents improvements of a method (Stum et al., 2011) aimed at computing the water vapor path delay correction of altimeter sea surface height, using total precipitable water measurements from scanning microwave radiometers. The main interest of this improved method is for the Cryosat-2 mission over the ocean. Focus is made on the applicability of the method in near real time. An experiment to produce an operational path delay correction for Jason-2 and Cryosat-2 Interim Geophysical Data Records (IGDR) has been set up. Results confirm that the new correction, although less accurate than the one attainable with an embarked radiometer, improves the Cryosat-2 sea surface height accuracy.  相似文献   

16.
Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) acquired in wave mode (WV) and quad-polarization stripmap (QPS) mode default operates in quad-polarization (vertical–vertical (VV), vertical-horizontal (VH), horizontal-horizontal (HH) and horizontal-vertical (HV)) modes. To date, more than GF-3 SAR vignettes following about 110 orbits acquired in WV and QPS mode have been recorded during the mission from April 2016 to December 2017. In the vignettes, ocean surface waves signatures, that are wave-look patterns, are visible in cross-polarization (basically VH). These vignettes are collocated with surface sea state parameters simulated from numerical WAVEWATCH-III (WW3) wave model using a 0.1° grid. There are 11,269 matchups available for studying the relation between sea state parameters and SAR-derived parameters in VH-polarization. A well-known empirical CWAVE model, herein renamed as CPCWAVE_GF3, is adopted for sea state parameter retrieval from GF-3 SAR vignettes with the SAR parameters in the cross-polarization channel. The method yielded a significant correlation coefficient (COR) of 0.79 for wave height (SWH) and 0.72 for second-order cross-zero mean wave period (MWP). Validation against 76 moored buoys resulted in a 0.49 m RMSE of SWH with a 0.21 m scatter index (SI) and validation against 71 moored buoys resulted in a 1.01 s RMSE of MWP with a 0.13 s SI. The comparison of SWH with 116 footprints from the altimeter of Jason-2 also shows a 0.46 m RMSE of SWH with a 0.19 m SI. Our work demonstrates the feasibility of wave retrieval from GF-3 SAR using cross-polarization channels parameters.  相似文献   

17.
    
针对频率步进合成孔径雷达(SAR)采用经典逆傅里叶变换成像方法时距离向无模糊测绘带宽度有限的问题,提出一种将频率步进SAR脉冲串信号等效为沿航迹分布的虚拟阵列雷达信号的模型及成像处理方法,并利用改进的后向投影方法实现对目标的无模糊成像。建立了频率步进SAR虚拟阵列模型,给出了基于该模型的高分辨距离像合成方法,并通过在原始后向投影方法的基础上引入距离偏移校正和二次相位补偿,实现了对目标的精确二维成像。结果表明:频率步进SAR虚拟阵列模型成像方法不受频率步进雷达无模糊测绘带宽度的理论限制,可以实现较宽测绘带内各目标的无模糊、快速成像。  相似文献   

18.
The main objective of this paper is to integrate Non-Tidal Sea Level (NSL) from the joint TOPEX, Jason-1 and Jason-2 satellite altimetry with tide gauge data at the west and north coast of the United Kingdom for coastal sea level prediction. The temporal correlation coefficient between altimetric NSLs and tide gauge data reaches a maximum higher than 90% for each gauge. The results show that the multivariate regression approach can efficiently integrate the two types of data in the coastal waters of the area. The Multivariate Regression Model is established by integrating the along-track NSL from the joint TOPEX/Jason-1/Jason-2 altimeters with that from eleven tide gauges. The model results give a maximum hindcast skill of 0.95, which means maximum 95% of NSL variance can be explained by the model. The minimum Root Mean Square Error (RMSe) between altimetric observations and model predictions is 4.99 cm in the area. The validation of the model using Envisat satellite altimetric data gives a maximum temporal correlation coefficient of 0.96 and a minimum RMSe of 4.39 cm between altimetric observations and model predictions, respectively. The model is furthermore used to predict high frequency NSL variation (i.e., every 15 min) during a storm surge event at an independent tide gauge station at the Northeast of the UK (Aberdeen).  相似文献   

19.
DORIS system: The new age   总被引:1,自引:0,他引:1  
The boarding of the first DGXX DORIS instrument on Jason-2 mission gives us the opportunity to present the improvements that have been implemented on the DORIS system. The goal of this paper is to present information about the new capacities of the DORIS system and to give the current status of its components. An overview of the DORIS system, the International DORIS Service and the Jason-2 satellite mission are first presented. Then the new characteristics of the on-board instrument are detailed. The capacity to track up to seven ground beacons simultaneously dramatically increases the number of measurements performed: a factor of three increase over Jason-1 is observed at the altitude of 1330 km. It also increases the diversity of directions of observation and allows low elevation measurements from 0°. The new phase measurements capability allows now phase processing. The instability of the Jason-1 USOs (Ultra-Stable Oven-controlled quartz oscillator) while crossing the South Atlantic Anomaly has been solved by decreasing the sensitivity to radiation by a factor of 10. New features of the on-board software enhance the coastal and inland water altimetry and increase the robustness of the data. The new software also improves the real time orbit accuracy for operational altimetry. The improvements introduced concurrently on the ground segment have also significantly enhanced capability. The new RINEX exchange formats provide simultaneous phase and pseudo-range measurements. The maintenance of the DORIS Beacons Network and the work done by the DORIS Signal Integrity monitoring team lead to an increased availability of the Network from 75% to 90% and so to a more homogenous orbit coverage.  相似文献   

20.
In this paper, seasonal sea level variations have been determined at five locations in the Baltic Sea from satellite altimetry for the period 1993–2015. The results were compared to tide gauge water level data. Annual and semi-annual amplitudes have been investigated for both sea level anomalies and tide gauge water level. It was found that the two independent observations of sea level variations along the Polish coast are in good agreement both in terms of their annual and semi-annual amplitudes and their annual and semi-annual phases. The annual cycles in the sea level variations measured by altimetry and tide gauge reach maximum values at approximately the same month (November/December).Moreover, this article shows the differences between the annual and semi-annual amplitudes and phases in the sea level anomalies and water level data within the same time frame. The difference in the annual amplitudes between the satellite altimetry and the tide gauge results is between 0.33?cm and 1.53?cm. The maximum differences in the annual cycle of the sea level changes were found at the Swinoujscie station. The correlations between the original series and the calculated curves were determined, and the relationship between the amplitudes and the phases were investigated. The correlation between the annual variations observed from the two independent observation techniques is 0.92.To analyse the dynamics of the change in sea level, the linear trend was estimated from the satellite altimetry and tide gauge time series both in the original time series of the data and in the time series in which seasonal variations were removed. In addition, we calculated the estimated errors of regression and how many years’ worth of data are needed to obtain an accuracy of 0.1?mm per year. The estimated errors of regression showed that to get an accuracy of 0.1?mm per year, we need 100?years of data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号