首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
通过对观测的光球纵向磁场进行势场外推, 重构了一个太阳宁静区光球以上的磁场结构. 结果显示, 在20 Mm 以下, 开放磁力线呈现多个明显的小磁漏斗结构, 这些小磁漏斗结构随高度扩展, 并且在20 Mm 左右融合成大的漏斗结构. 通过系统地研究磁漏斗结构横截面积随高度的变化趋势, 发现太阳宁静区磁漏斗结构的截面积随高度近似线性扩展, 磁漏斗结构在较低高度上(<20Mm) 扩展的速度比在较高高度上 (>20Mm) 扩展的速度要快. 这一结果对太阳风起源和磁环中物质流动的二维数值模拟具有重要的意义. 同时还发现, 闭合磁力线的数目随高度以指数函数的形式减少.   相似文献   

2.
Magnetic reconnection occurs during eruptive processes (flares, CMEs) in the solar corona. This leads to a change of magnetic connectivity. Nonthermal electrons propagate along the coronal magnetic field thereby exciting dm- and m-wave radio burst emission after acceleration during reconnection or other energy release processes in heights of some Mm to ⩾700 Mm. We summarize the results of some case studies which can be interpreted as radio evidence of magnetic reconnection: under certain conditions, simple spectral structures (pulsation pulses, reverse drift bursts) are formed by simultaneously acting but widely spaced radio sources. Narrowband spikes are emitted as a side-effect during large-scale coronal loop collisions. In dynamic radio spectra, the lower fast mode shock formed in the reconnection outflow appears as type II burst-like but nondrifting emission lane. It has been several times observed at the harmonic mode of the local plasma frequency between 250 and 500 MHz and at heights of ≈200 Mm.  相似文献   

3.
The atmosphere of the Sun is highly structured and dynamic in nature. From the photosphere and chromosphere into the transition region and the corona plasma-β changes from above to below one, i.e., while in the lower atmosphere the energy density of the plasma dominates, in the upper atmosphere the magnetic field plays the governing role – one might speak of a “magnetic transition”. Therefore the dynamics of the overshooting convection in the photosphere, the granulation, is shuffling the magnetic field around in the photosphere. This leads not only to a (re-)structuring of the magnetic field in the upper atmosphere, but induces also the dynamic reaction of the coronal plasma, e.g., due to reconnection events. Therefore the (complex) structure and the interaction of various magnetic patches is crucial to understand the structure, dynamics and heating of coronal plasma as well as its acceleration into the solar wind.

The present article will emphasize the need for three-dimensional modeling accounting for the complexity of the solar atmosphere to understand these processes. Some advances on 3D modeling of the upper solar atmosphere in magnetically closed as well as open regions will be presented together with diagnostic tools to compare these models to observations. This highlights the recent success of these models which in many respects closely match the observations.  相似文献   


4.
利用多卫星多波段的综合观测数据,通过追踪光球表面等离子体速度分析计算了耀斑爆发前后磁螺度的变化,发现耀斑爆发前活动区中光球表面存在强的水平剪切运动,活动区磁螺度的注入主要由这种剪切运动所产生;使用CESE-MHD-NLFFF重建了耀斑爆发前后活动区的磁场位形,推测出耀斑过程中存在磁绳结构的抛射.基于这些分析,给出了这一螺旋状抛射结构的形成机制:爆发前暗条西侧足点的持续剪切运动驱动磁通量绳增加扭转,高度扭缠的通量绳与东侧足点附近的开放磁力线重联并与东侧足点断开,进而向外抛出并伴随解螺旋运动.另外,利用1AU处WIND卫星的观测数据在对应的行星际日冕物质抛射中找到典型磁云的观测特征.这表明除了传统上双足点均在太阳表面的磁云模型,这种单足点固定于太阳表面的磁通量绳爆发图景同样可能在行星系际空间形成磁云结构.研究结果对进一步认识磁云结构具有重要意义.  相似文献   

5.
We present observations of flaring active regions with the Very Large Array (V.L.A. at 6 cm and 20 cm wavelengths) and the Westerbork Synthesis Radio Telescope (W.S.R.T. at 6 cm wavelength). These are compared with photospheric magnetograms (Meudon) and with Hα and offband Hα photographs (Big Bear and Ottawa River Solar Observatories). The 6 cm radiation of these active regions marks the legs of dipolar loops which have their footpoints in lower-lying sunspots. The intense, million degree radiation at 6 cm lies above sunspot umbrae in coronal regions where the longitudinal magnetic field strength H? = 600 Gauss and the height above the sunspot umbrae h = 3.5±0.5 × 109 cm. Circularly polarized horseshoe structures at 6 cm ring the sunspot umbrae. The high degree of circular polarization (?c = 95%) of the horseshoes is attributed to gyroresonant emission above sunspot? penumbrae. The 20 cm radiation of these active regions exhibits looplike coronal structures which extend across regions of opposite magnetic polarity in the underlying photosphere. The 20 cm loops are the radio wavelength counterparts of the X-ray coronal loops. We infer semilengths L = 5 × 109 cm, maximum electron temperatures Te(max) = 3 × 106 K, emission measures ∫Ne2dl = 1028 cm?5, and electron densities Ne = 109 cm?3 (or pressures p = 1 dyn cm?2) for the 20 cm bremsstrahlung. A total of eight solar bursts were observed at 6 cm or 20 cm wavelength with second-of-arc angular resolution. The regions of burst energy were all resolved with angular sizes between 5″ and 30″, brightness temperatures between 2 × 107 K and 2 × 108 K, and degrees of circular polarization between 10% and 90%. The impulsive phase of the radio bursts are located near the magnetic neutral lines of the active regions, and between the flaring Hα kernels which mark the footpoints of magnetic loops. In one case there was preburst heating in the coronal loop in which a burst occurred. Snapshot maps at 10 s intervals reveal interesting burst evolution including rapid changes of circular polarization and an impulsive burst which was physically separated from both the preburst radio emission and the gradual decay phase of the burst.  相似文献   

6.
We study extreme-ultraviolet emission line spectra derived from three-dimensional magnetohydrodynamic models of structures in the corona. In order to investigate the effects of increased magnetic activity at photospheric levels in a numerical experiment, a much higher magnetic flux density is applied at the photosphere as compared to the Sun. Thus, we can expect our results to highlight the differences between the Sun and more active, but still solar-like stars. We discuss signatures seen in extreme-ultraviolet emission lines synthesized from these models and compare them to observed signatures in the spatial distribution and temporal evolution of Doppler shifts in lines formed in the transition region and corona. This is of major interest to test the quality of the underlying magnetohydrodynamic model to heat the corona, i.e. currents in the corona driven by photospheric motions (flux braiding).  相似文献   

7.
The solar plasma is strongly structured by the presence of magnetic field. This structuring is manifest in the photosphere in the form of flux tubes, from the readily visible sunspots to the sub-telescopic intense tubes, so that the atmosphere is divided into strong-field media or field-free media. In the corona, by contrast, the magnetic field permeates the whole of the atmosphere and structuring consists principally of density and temperature inhomogeneities. We discuss some of the causes of magnetic structuring, including kinematic concentration, convective collapse and magnetoconvection for photospheric tubes, spicules in the chromosphere, and thermal instability for coronal loops.  相似文献   

8.
The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun’s atmospheric layers.In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5?Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model.We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs).Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.  相似文献   

9.
Transition region and coronal observations of bright points by instruments aboard the Solar Maximum Mission were accompanied by high resolution photospheric magnetograph observations on September 11, 1980.In the photosphere a total of 31 bipolar ephemeral regions were observed from birth in 9.3 hours of combined magnetograph observations from three observatories.The Ultraviolet Spectrometer-Polarimeter observed 2 of the 3 ephemeral regions present in its field of view in the C IV 1548Å line. The unobserved ephemeral region was the shortest-lived (2.5 hr) and lowest in magnetic flux density (13G) of the three.In the O VIII 18.969Å line, the Flat Crystal Spectrometer detected only low level signals that are not statistically significant to be positively identified with any of the 16 ephemeral regions observed in the photosphere.The SMM data shows that at any given time there lacked a one-to-one correspondence between observable bright points and photospheric ephemeral regions. More ephemeral regions were observed than their counterparts in the transition region and the corona.  相似文献   

10.
Recent developments regarding collisionless reconnection in current sheets with a finite normal magnetic field component (Bz) are reviewed. In 2-D x, z configurations the ion tearing mode is stabilized by the electron compressibility. When the y dependence is included, cross-field current instabilities can be excited. Of these, the drift kink mode appears to be particularly important. 3-D electromagnetic particle simulations indicate that this mode can act as the precursor to the growth of tearing modes and subsequent reconnection.  相似文献   

11.
在双极背景场下,光球层反向磁通量的喷发将会在新老磁场之间形成中性电流片.本文从理想磁流体方程组出发,考虑磁场和日冕等离子体的相互作用,对上述电流片的形成过程进行了数值研究.结果表明,对亚音速喷发,将由里向外形成四个区域:(1)由喷发物质直接形成的低温,高密度日珥,位于最里层;(2)紧挨抛射日珥的低温稀疏区;(3)喷发物质和日冕物质向中性电流片集中形成的高温.高密度物质环;(4)在环的周围,由快磁声波形成的,密度略比日冕背景为高的前鞘区.上述结构与典型的环形日冕瞬变的观测特征相符.由此表明双极背景场下反向磁通量的喷发可能是触发这类瞬变的重要机制.   相似文献   

12.
The disposition of energy in the solar corona has always been a problem of great interest. It remains an open question how the low temperature photosphere supports the occurence of solar extreme phenomena. In this work, a turbulent heating mechanism for the solar corona through the framework of reduced magnetohydrodynamics (RMHD) is proposed. Two-dimensional incompressible long time simulations of the average energy disposition have been carried out with the aim to reveal the characteristics of the long time statistical behavior of a two-dimensional cross-section of a coronal loop and the importance of the photospheric time scales in the understanding of the underlying mechanisms. It was found that for a slow, shear type photospheric driving the magnetic field in the loop self-organizes at large scales via an inverse MHD cascade. The system undergoes three distinct evolutionary phases. The initial forcing conditions are quickly “forgotten” giving way to an inverse cascade accompanied with and ending up to electric current dissipation. Scaling laws are being proposed in order to quantify the nonlinearity of the system response which seems to become more impulsive for decreasing resistivity. It is also shown that few, if any, qualitative changes in the above results occur by increasing spatial resolution.  相似文献   

13.
本文采用非径向磁流管位形的假设,计算了太阳冕洞网络部分的色球-日冕过渡区的能量平衡模型。所考虑的能量流包括辐射、传导、对流和机械波加热(如阿尔芬波),计算结果表明在冕洞网络部分的过渡区中,电子温度T和密度N分别比宁静太阳中的值低60%和2倍,而其过渡区的厚度比宁静太阳中的大4倍。这种大气模型可满意地解释T≥105K范围的远紫外观测发射量度的分布。另外我们也发现在冕洞大气的过渡区中,阿尔芬波加热似乎不能忽略,尤其是在冕洞的过渡区底部,它的加热作用可能会超过热传导。在冕洞大气中,由于波动量的淀积而产生的对流能损耗也是重要的,在过渡区底部650km以上,对流能损耗逐渐超过辐射损耗。   相似文献   

14.
李醒 《空间科学学报》1996,16(3):178-186
采用二维三分量的耗散磁流体力学模型,对由于光球层的剪切运动引起的四极磁场内电流片的形成过程进行数值模拟。结果表明,磁分隔线在磁场的演化过程中起关键作用。电流主要在分隔面和根部剪切梯度较大的磁环中形成,其中在分隔线上最强。磁分隔线可以被拉长,形成强电流片,随着速度剪切位置的不同,电流片的形成模式也不同,既可以形成与光球层垂直的电流片,也可以形成平行的电流片。   相似文献   

15.
The amount of emergence and submergence of magnetized plasma and the horizontal motion of the footpoints of flux tubes might be crucial for the dynamics of the solar atmosphere. Although the rate of flux emergence and submergence can be observationally determined near the polarity inversion line (Chae et al., 2004), the same is not true for regions away from the PIL. Also, the horizontal motions cannot be directly measured in the solar photosphere. In this sense, the evolution of the photospheric magnetic field provides valuable information which can be used to estimate photospheric plasma flows since magnetic field and plasma are closely associated (frozen-in-condition). We used three methods to estimate the photospheric plasma motion from magnetic field observations. The methods were applied to photospheric vector magnetic field data of active region NOAA 9077, observed by the Huairou Solar Observing Station (HSOS) of the National Astronomical Observatories of China before and after the ‘Bastille Day’ flare on July 13th and 14th, 2000.  相似文献   

16.
The Bent Crystal Spectrometer on the NASA Solar Maximum Mission satellite provides high spectral and temporal resolution observations of the Fe Kα lines. We have analysed spectra from almost 50 solar flares that occurred during 1980. These data strongly support fluorescent excitation of photospheric iron by photons of E > 7.11 keV emitted by the hot coronal plasma produced during the flare. After comparison of the data with a model, we discuss the observed Kα line widths, estimates of the size of the emitting region, the height of the coronal source and the photospheric iron abundance.  相似文献   

17.
We have investigated the source characteristic and coronal magnetic field structure of six impulsive solar energetic particle (SEP) events selected from Wang et al. [Wang, Y.-M., Pick, M., Mason, G.M. Coronal holes, jets, and the origin of 3He-rich particle events. ApJ 639, 495, 2006] and Pick et al. [Pick, M., Mason, G.M., Wang, Y.-M., Tan, C., Wang, L. Solar source regions for 3He-rich solar energetic particle events identified using imaging radio, optical, and energetic particle observations. ApJ 648, 1247, 2006]. Some results are obtained: first, 2 events are associated with wide (≈100°) CMEs (hereafter wide CME events), another 4 events are associated with narrow (?40°) CMEs (hereafter narrow CME events); second, the coronal magnetic field configuration of narrow CME events appear more simple than that of the wide CME events; third, the photospheric magnetic field evolutions of all these events show new emergence of fluxes, while one case also shows magnetic flux cancellation; fourth, the EUV jets usually occurred very close to the footpoint of the magnetic field loop, while meter type III bursts occurred near or at the top of the loop and higher than EUV jets. Furthermore, the heights of type III bursts are estimated from the result of the coronal magnetic field extrapolations.  相似文献   

18.
A semi-analytical model for the electrodynamic development of two-ribbon flares is presented. A current filament above a bipolar active region starts rising according to the model of Van Tend and Kuperus. Due to this motion large induced electric fields arise at a magnetic neutral line far below the filament, resulting in and associated with magnetic reconnection and the formation of a current sheet. The interaction of this current sheet with the original current filament, the background magnetic field and the boundary layer of the photosphere determine the further electrodynamic development of the flare. The model predicts the energy release, the time of maximum, the height of the energy source and other quantities reasonably well.  相似文献   

19.
Studying of the coronal plasma associated with long-lived complexes of the solar activity is important for understanding a relationship between the magnetic activity and the solar corona changing during the solar cycle.

In the present paper, two long-lived complexes of the solar activity at the beginning of the current solar cycle 23 are investigated by using the Extreme-Ultraviolet data (EUV) from SOHO/EIT. For this purpose the EIT limb synoptic maps during the CR1916–CR1919 (11 November 1996–1 March 1997) are obtained.

The coronal temperature structures derived from the three lines 171A (Fe IX,X), 195A (Fe XII)and 284A (Fe XV) are investigated by applying an algorithm developed by Zhang et al. [Zhang, J., White, S.M., Kundu, M.R. ApJ 527, 977, 1999]. Standard EIT software are used for the temperature estimation from the ratio of two lines of Fe IX,X and Fe XII.

The method of the rotational tomography with a correction for an inclination of the Earth’s orbit (B-angle) to the helioequator is applied to obtain the three-dimensional (3-D) coronal structure of the complex of the solar activity. The results reveal difference in temperature structures related to multi-poles magnetic structures of the complex of solar activity and to the typical, the bipolar activity complex.  相似文献   


20.
A study is made of the differences in the polarization distribution and other characteristics of microwave emission for several active regionswith high flare productivity. Conclusions are drawn about the magnetic field structure of these regions at coronal heights.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号