首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solar modulation of galactic cosmic radiation   总被引:1,自引:0,他引:1  
In this review an attempt is made to present an integrated view of the solar modulation process that cause time variation of cosmic ray particles. After briefly surveying the relevant large and small scale properties of the interplanetary magnetic fields and plasma, the motion of cosmic ray particles in the disordered interplanetary magnetic fields is discussed. The experimentally observed long term variations of different species of cosmic ray particles are summarised and compared with the theoretical predictions from the diffusion-convection model. The effect of the energy losses due to decelaration in the expanding solar wind are clearly brought out. The radial density gradient, the modulation parameter and their long term variation are discussed to understand the dynamics of the modulating region. The cosmic ray anisotropy measurements at different energies are summarised. At high energies (E 1 GeV), the average diurnal anisotropy is shown to be energy independent and along the 18.00 h direction consistent with their undergoing partial corotation with the sun. The average semi-diurnal anisotropy seems to vary with energy as E +1 and incident from a direction perpendicular to the interplanetary field line, consistent with the semi-diurnal component being produced by latitudinal gradients. Both the diurnal and semi-diurnal components are shown to be practically time invariant. On a day to day basis, however, the anisotropy characteristics such as the exponent of variation, the amplitude and the phase show very high variability which are interpreted in terms of convection and variable field aligned diffusion due to the redistribution of the galactic cosmic ray density following transient changes in the interplanetary medium. The anisotropy observation at low energies (E 100 MeV) are, however, not explained by the theory.The rigidity dependence and the anisotropies during short term variations such as Forbush decreases are discussed in terms of the proposed field models for the interplanetary field structure and are compared with the observed rigidity dependence of long term variations. The data pertaining to the 27 day corotating Forbush decreases and their association with enhanced diurnal variation are also presented. The relationship between the energetic storm particle events which are caused by the acceleration of particles in the shock fronts and the Forbush decreases which are caused by the exclusion of galactic particles by the enhanced field structure in the same fronts are clearly brought out. Thus the recurrent increases at low energies and recurrent decreases at high energies may both be caused by the field structure in the shock front. In conclusion, the properties of the very short period fluctuations (18–25 cph) are summarised.  相似文献   

2.
A series of spectacular cosmic ray events which included two relativistic solar particle enhancements and three major Forbush decreases were registered by ground-based cosmic ray monitoring stations beginning 4 August, 1972. These were associated with four major proton flare events on the Sun and with large interplanetary magnetic field disturbances and high velocity shock waves. This review attempts to discuss and interpret the high energy cosmic ray phenomena observed during this period in the light of the known behaviour of low energy particulate flux, interplanetary plasma and field observations and other associated solar and terrestrial effects recorded during this period.The first Forbush decrease event FD-1 occurred in the early hours of 4 August, exhibiting very strong north-south and east-west anisotropies. Immediately following the onset of FD-1, the first ground level solar particle enhancement occurred. This event, which had its onset almost 6 h after the flare event on 4 August, had a very steep rigidity spectrum. The major Forbush event of the series which had its onset at 2200 UT on 4 August, exhibited extremely interesting and complex behaviour, the prominent features of which are a precursory increase prior to the onset (PI-1), a large decrease (FD-2), the largest observed to date, followed immediately by an abrupt square wave like enhancement (PI-2). Interplanetary space during this entire period was highly disturbed by the presence of large low energy particulate fluxes and shock waves, at least one of which had a velocity exceeding 2000 km s-1. Large north-south and east-west anisotropies existed throughout the event. Both FD-2 and PI-2 were characterized by almost the same rigidity spectrum, with a power law index of -1.2 ± 0.2, and a predominant anisotropy along the sunward direction. The square wave-like spike PI-2 during the recovery of FD-2 was associated with a similar abrupt change in low energy particle flux in space, as well as an abrupt decrease in the interplanetary magnetic field value from 50 to 10 .Based on the available particle, field and plasma observations, an unified model is presented to explain the Forbush event in terms of a transient modulating region associated with the passage of a narrow magnetic shock front. In this model, the reflection of particles from the approaching shock front account for the precursory increase PI-1. The main Forbush event is caused when the magnetic barrier at the shock front sweeps past the Earth. The square wave increase is due to the enhanced flux contained in the magnetic well just behind the shock front and bounded by magnetic discontinuities, which is explained as due to the transverse diffusion of particles into this region from the interplanetary space which have easy access to this region. In situ plasma, field and low energy particle observations are reviewed to support the model.Also Professor at Physical Research Laboratory, Ahmedabad 380009, India.  相似文献   

3.
Although static loop models are often used to describe the structure of coronal loops, it is evident on both observational and theoretical grounds that mass motions play a crucial role in the physics of the corona and transition region. First we review the observations of emission-line broadening and wavelength shifts, which imply the presence of random motions and systematic downflows in coronal loops. Some discrepancies in the observations are discussed. It is argued that velocities due to gas pressure gradients are the most likely explanation for the observed flows. A number of models that have been proposed for these motions are reviewed. The implications of the various models on observations of the corona and transition region by SOHO are discussed.  相似文献   

4.
Observations of the eleven-year cosmic-ray modulation cycle   总被引:1,自引:0,他引:1  
  相似文献   

5.
Adaptive controller design for a linear motor control system   总被引:1,自引:0,他引:1  
Three different adaptive controllers for a permanent magnet linear synchronous motor (PMLSM) position-control system are proposed. The proposed controllers include: a backstepping adaptive controller, a self-tuning adaptive controller, and a model reference adaptive controller. The detailed systematic controller design procedures are discussed. A PC-based position control system is implemented. Several experimental results including transient responses, load disturbance responses, and tracking responses of square-wave, sinusoidal-wave, and triangular-wave commands are discussed and compared. The proposed system has a good robustness performance even though the inertia of the system is increased to 10 times. The experimental results validate the theoretical analysis.  相似文献   

6.
The Be stars     
Classical Be stars are defined and their relationship to normal B-type stars stated. Spectral classification of the underlying stars suggests that, on the average, Be stars are located 0.5–1.0 magnitude above the main sequence. Struve's rotational model for Be stars, and several tests which support the model, are reviewed. The best evidence at this time suggests that Be stars may not rotate with the critical velocity at which centrifugal force just balances the equatorial gravitational force, but a number of mechanisms for getting material out into the shell have been proposed and are discussed.The physical characteristics of Be shells were first derived from optical observations of shell stars, supplemented more recently by ultraviolet, infrared, radio, and polarization measurements. These data suggest that Be shells are probably lenticular with radii 3 to 20 times the radius of the underlying star, excitation temperatures lower than those of the reversing layers, and electron densities in the range 1010-1013 cm-3.Variability of Be stars, from spectroscopic, photometric, and polarimetric observations, seems well established over time scales of years and months, but the evidence for night-to-night and hourly changes is somewhat conflicting. Of special interest are recent X-ray observations of several Be stars.Models for the envelopes of Be stars are reviewed, including state-state stellar wind models, time-dependent stellar wind models, the elliptical ring model, disk models, and binary models. Finally, the evolutionary status of Be stars is discussed, and some recommendations for future work made.  相似文献   

7.
We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.  相似文献   

8.
The theoretical framework and experimental methodology used to interpret observations of ionospheric scintillations in terms of geophysical processes are reviewed and recent experimental observations of ionospheric scintillations are discussed in this paper. During the past 15 years significant progress has been made in several areas. In particular, significant advances have been made in theoretical understanding of the strong scintillation regime and the effects of short-term temporal variations of the scintillation producing irregularities on observations made with spaced-receiver geometries in both weak and strong scintillations. This improved understanding of the scintillation process has significantly increased the utility of the technique particularly in the equatorial latitudes where geometrical effects are least important.  相似文献   

9.
A novel 0-Poisson’s ratio cosine honeycomb support structure of flexible skin is proposed. Mechanical model of the structure is analyzed with the energy method, finite element method (FEM) and experiments have been performed to validate the theoretical model. The in-plane characteristics of the cosine honeycomb are compared with accordion honeycomb through analytical models and experiments. Finally, the application of the cosine honeycomb on a variable camber wing is studied. Studies show that mechanical model agrees well with results of FEM and experiments. The transverse non-dimensional elastic modulus of the cosine honeycomb increases (decreases) when the wavelength or the wall width increases (decreases), or when the amplitude decreases (increases). Compared with accordion honeycomb, the transverse non-dimensional elastic modulus of the cosine honeycomb is smaller, which means the driving force is smaller and the power consumption is less during deformation. In addition, the cosine honeycomb can satisfy the deform- ing requirements of the variable camber wing.  相似文献   

10.
The radio observations of Venus are reviewed and compared with theoretical microwave spectra computed for a variety of models of the Venusian environment. The models considered are (a) a CO2-N2 atmosphere, (b) an atmosphere of dust (the aeolosphere model), and (c) a cloud model with various loss mechanisms in the cloud. The effect of polarization on the surface emissivity has been included in all the computations. It is shown how the radio observations place limits upon the acceptable models, for example, the density and size of dust particles required in the aeolosphere model. It is shown how some models place severe restrictions on radar observations at short centimeter wavelengths, thereby emphasizing the importance of such experiments. These same models show that the Mariner II observations can not be interpreted in terms of surface phenomena and provide a new interpretation for the microwave phase effect.This work was supported in part by the U.S. Army, Navy and Air Force under Contract DA36-039-AMC-03200(E); and in part by the National Aeronautics and Space Administration (Grants NsG-250-62 and NsG-419).  相似文献   

11.
Wibberenz  G.  le Roux  J.A.  Potgieter  M.S.  Bieber  J.W. 《Space Science Reviews》1998,83(1-2):309-348
In the present phase of the solar cycle no big transients leading to strong modulation had been observed after 1991. Apart from a few minor disturbances cosmic rays were still recovering to a new intensity maximum. It was suggested, therefore, that existing literature from previous cycles should be critically reviewed. The scene was set by the introductory papers on— phenomenology of cosmic ray modulation in successive solar cycles throughout the heliosphere— the present state of models for long term modulation and their shortcomings— the relation between cosmic ray variations and the magnitude of the interplanetary magnetic field (the CR-B-relation)— charge dependent effects.In the discussions, the study of propagating diffusive disturbances and the CR-B-relation played a central role. The difference was stressed between isolated transient disturbances in the inner solar system (Forbush decreases), and the long lasting, step-like decreases caused by merged interaction regions in the outer heliosphere. The recovery rates following the step-like decreases vary with the phase in the 22-year solar cycle. In some cases this requires a modification of existing drift models. In the outer heliosphere, the CR-B-relation leads to the result 1/ between the diffusion coefficient and the field magnitude . This simple result is a challenge for theoreticians to derive the perpendicular diffusion coefficient fromfirst principles. The three articles in this report essentially follow the list of open points and arguments just presented.The article "Observations and Simple Models" is organised around the model of a propagating diffusive barrier, its application to Forbush effects in the inner heliosphere and to decreases caused by merged interaction regions in the outer heliosphere. Acomparison of observed Forbush decreases with model predictions requires a careful separation of the two steps related to the turbulent region behind the shock front and the closed magnetic field regions of the ejecta (the interplanetary counterparts of coronal mass ejections). It is shown that models for propagating disturbances can be used to derive values of the diffusion coefficients phenomenologically, not only during the disturbance, but also in the ambient medium.The "Modeling of Merged Interaction Regions" summarizes the dynamic and time-dependent process of cosmic ray modulation in the heliosphere. Numerical models with only a time-dependent neutral sheet prove to be successful when moderate to low solar activity occurs but fail to describe large and discrete steps in modulated cosmic rays when solar activity is high. To explain this feature of heliospheric modulation, the concept of global merged interaction regions is required. The com-bination of gradient, curvature and neutral sheet drifts with these global merged interaction regions has so far been the most successful approach in explaining the 11-year and 22-year cycles in the long-term modulation of cosmic rays.The "Remarks on the Diffusion Tensor in the Heliosphere" describe available theories of perpen-dicular diffusion and drift, and discuss their relevance to cosmic rays in the heliosphere. In addition, the information about diffusion coefficients and spatial gradients obtained from the analysis of steady state anisotropies at neutron monitor energies is summarized. These topics are intimately related to the other two articles. They are also part of the general discussion about the "Diffusion Tensor throughout the Heliosphere" which played an important role in all working groups.  相似文献   

12.
13.
本文分析了准爆轰波的传播过程与物理机制,提出了一个全新的准爆轰波物理模型,开展了理论分析与数值模拟研究.在该物理模型中考虑了超声速流动化学反应放热造成的动量损失,计算结果表明准爆轰波发展过程是热壅塞的.计算与实验结果的定性吻合表明了本文提出的理论模型是正确的,获得的计算结果是合理的,对于准爆轰波物理机理的讨论是有重要意义的.  相似文献   

14.
This review presents an introduction to the theory of accretion disks. After explaining the importance of accretion disks in stellar X-ray sources, it considers observational and theoretical indications of the formation of accretion disks in close binary systems. The simple Shakura and Sunyaev model and its problems are discussed. A survey of other models that try to improve upon this model is given (in Table III), and critically discussed.  相似文献   

15.
Prominence seismology is a rapidly developing topic which seeks to infer the internal structure and properties of solar prominences from the study of its oscillations. An extensive observational background about oscillations in quiescent solar prominences has been gathered during the last 70 years. These observations point out the existence of two different types of oscillations: Flare-induced oscillations (winking filaments) which affect the whole prominence and are of large amplitude and small amplitude oscillations which seem to be of local nature. From the theoretical point of view, few models have been set up to explain the phenomenon of winking filaments while, on the contrary, for small amplitude oscillations a large number of models trying to explain the observed features have been proposed.  相似文献   

16.
In this review paper, the physical properties of the Saturnian and Uranian rings as derived from ground-based observations are first discussed. Focus is then shifted to the study of the orbital dynamics of the ring particles. Numerical simulations of the evolutionary history of a system of colliding particles in differential rotation together with theoretical modelling of the inelastic collision processes are surveyed. In anticipation of the information returned from in situ measurements by space probes, interactions of the planetary rings with the interplanetary meteoroids and planetary magnetospheres are briefly considered. Finally, models of planetary ring origin are examined. In this connection, some recent work on the satellite resonant perturbation effects on the ring structure are also touched upon.  相似文献   

17.
Evidence for acceleration of charged particles in the solar atmosphere is reviewed with specific reference to production of gamma rays and neutrons at the Sun. Fluxes of these components at the Earth, based on theoretical assumptions are also reviewed and estimates and conditions for obtaining observable fluxes from Syrovatskii's dynamic dissipation model are considered. Knowledge about the Sun, to be derived from such observations, is discussed. Finally, a brief review of the present status of experimental observations and suggestions for new experimental approaches are given. Work performed while author was a guest of the Max-Planck-Institute for Physics and Astrophysics, München, on sabbatical leave from the University of New Hampshire, Durham, New Hampshire, U.S.A. Partially supported by a NATO Senior Fellowship in Science.  相似文献   

18.
基于改进发生函数方法的多状态系统可靠性分析   总被引:1,自引:0,他引:1  
高鹏  谢里阳 《航空学报》2010,31(5):934-939
发生函数(UGF)是多状态系统可靠性分析的重要数学手段。通过分解算子,对载荷发生函数进行展开,再结合内积算子和强度发生函数建立考虑共因失效时计算多状态系统可靠度的数学模型。提出了考虑载荷多次作用效应和多种载荷作用时的可靠度计算模型。通过实例研究了共因失效和载荷多次作用效应对多状态系统可靠性的影响。研究表明,共因失效和载荷多次作用效应均对系统及零件可靠度产生影响,而且系统可靠度随着载荷作用次数的增加显著下降。运用本文模型可以直接计算指定载荷作用次数下,存在共因失效时的多状态系统可靠度。  相似文献   

19.
刘俊明  周尧和 《航空学报》1988,9(11):547-553
 本文对锶变质铝硅共晶生长过程进行了讨论,变质铝硅共晶固液界面处,溶质扩散过冷和曲率过冷仅是固液界面总过冷的一小部分,界面总过冷受生长速度的影响十分显著。可以认为生长过程中共晶固液界面处于偏离平衡的某一定态,这一定态同生长速度和温度梯度密切相关。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号