首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kamide  Y.  Kihn  E.A.  Ridley  A.J.  Cliver  E.W.  Kadowaki  Y. 《Space Science Reviews》2003,107(1-2):307-316
We report the recent progress in our joint program of real-time mapping of ionospheric electric fields and currents and field-aligned currents through the Geospace Environment Data Analysis System (GEDAS) at the Solar-Terrestrial Environment Laboratory and similar computer systems in the world. Data from individual ground magnetometers as well as from the solar wind are collected by these systems and are used as input for the KRM and AMIE magnetogram-inversion algorithms, which calculate the two-dimensional distribution of the ionospheric parameters. One of the goals of this program is to specify the solar-terrestrial environment in terms of ionospheric processes, providing the scientific community with more than what geomagnetic activity indices and statistical models provide. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
There are several external sources of ionospheric forcing, including these are solar wind-magnetospheric processes and lower atmospheric winds and waves. In this work we review the observed ion-neutral coupling effects at equatorial and low latitudes during large meteorological events called sudden stratospheric warming (SSW). Research in this direction has been accelerated in recent years mainly due to: (1) extensive observing campaigns, and (2) solar minimum conditions. The former has been instrumental to capture the events before, during, and after the peak SSW temperatures and wind perturbations. The latter has permitted a reduced forcing contribution from solar wind-magnetospheric processes. The main ionospheric effects are clearly observed in the zonal electric fields (or vertical E×B drifts), total electron content, and electron and neutral densities. We include results from different ground- and satellite-based observations, covering different longitudes and years. We also present and discuss the modeling efforts that support most of the observations. Given that SSW can be forecasted with a few days in advance, there is potential for using the connection with the ionosphere for forecasting the occurrence and evolution of electrodynamic perturbations at low latitudes, and sometimes also mid latitudes, during arctic winter warmings.  相似文献   

3.
The auroral zone ionosphere is coupled to the outer magnetosphere by means of field-aligned currents. Parallel electric fields associated with these currents are now widely accepted to be responsible for the acceleration of auroral particles. This paper will review the theoretical concepts and models describing this coupling. The dynamics of auroral zone particles will be described, beginning with the adiabatic motions of particles in the converging geomagnetic field in the presence of parallel potential drops and then considering the modifications to these adiabatic trajectories due to wave-particle interactions. The formation of parallel electric fields can be viewed both from microscopic and macroscopic viewpoints. The presence of a current carrying plasma can give rise to plasma instabilities which in a weakly turbulent situation can affect the particle motions, giving rise to an effective resistivity in the plasma. Recent satellite observations, however, indicate that the parallel electric field is organized into discrete potential jumps, known as double layers. From a macroscopic viewpoint, the response of the particles to a parallel potential drop leads to an approximately linear relationship between the current density and the potential drop.The currents flowing in the auroral circuit must close in the ionosphere. To a first approximation, the ionospheric conductivity can be considered to be constant, and in this case combining the ionospheric Ohm's Law with the linear current-voltage relation for parallel currents leads to an outer scale length, above which electric fields can map down to the ionosphere and below which parallel electric fields become important. The effects of particle precipitation make the picture more complex, leading to enhanced ionization in upward current regions and to the possibility of feedback interactions with the magnetosphere.Determining adiabatic particle orbits in steady-state electric and magnetic fields can be used to determine the self-consistent particle and field distributions on auroral field lines. However, it is difficult to pursue this approach when the fields are varying with time. Magnetohydrodynamic (MHD) models deal with these time-dependent situations by treating the particles as a fluid. This class of model, however, cannot treat kinetic effects in detail. Such effects can in some cases be modeled by effective transport coefficients inserted into the MHD equations. Intrinsically time-dependent processes such as the development of magnetic micropulsations and the response of the magnetosphere to ionospheric fluctuations can be readily treated in this framework.The response of the lower altitude auroral zone depends in part on how the system is driven. Currents are generated in the outer parts of the magnetosphere as a result of the plasma convection. The dynamics of this region is in turn affected by the coupling to the ionosphere. Since dissipation rates are very low in the outer magnetosphere, the convection may become turbulent, implying that nonlinear effects such as spectral transfer of energy to different scales become important. MHD turbulence theory, modified by the ionospheric coupling, can describe the dynamics of the boundary-layer region. Turbulent MHD fluids can give rise to the generation of field-aligned currents through the so-called -effect, which is utilized in the theory of the generation of the Earth's magnetic field. It is suggested that similar processes acting in the boundary-layer plasma may be ultimately responsible for the generation of auroral currents.  相似文献   

4.
This chapter reviews the current understanding of ring current dynamics. The terrestrial ring current is an electric current flowing toroidally around the Earth, centered at the equatorial plane and at altitudes of ∼10,000 to 60,000 km. Enhancements in this current are responsible for global decreases in the Earth’s surface magnetic field, which have been used to define geomagnetic storms. Intense geospace magnetic storms have severe effects on technological systems, such as disturbances or even permanent damage of telecommunication and navigation satellites, telecommunication cables, and power grids. The main carriers of the ring current are positive ions, with energies from ∼1 keV to a few hundred keV, which are trapped by the geomagnetic field and undergo an azimuthal drift. The ring current is formed by the injection of ions originating in the solar wind and the terrestrial ionosphere into the inner magnetosphere. The injection process involves electric fields, associated with enhanced magnetospheric convection and/or magnetospheric substorms. The quiescent ring current is carried mainly by protons of predominantly solar wind origin, while active processes in geospace tend to increase the abundance (both absolute and relative) of O+ ions, which are of ionospheric origin. During intense geospace magnetic storms, the O+ abundance increases dramatically. This increase has been observed to occur concurrently with the rapid intensification of the ring current in the storm main phase and to result in O+ dominance around storm maximum. This compositional change can affect several dynamic processes, such as species-and energy-dependent charge-exchange and wave-particle scattering loss.  相似文献   

5.
Summary Precipitations of soft particles at the polar region will enhance the electron density in the oval shaped region surrounding the pole and their effects are marked at winter night.Reduction in the electron density in the sunlit polar region and at the trough may be caused by polar atmospheric heating through two processes; one is the increased chemical reaction coefficients controlling the loss rate of electron density and the other is the decrease in atmospheric density ratio O/N2 near the turbopause caused by enhanced mixing by atmospheric gravity waves or by convective motion of the upper atmosphere.Positive disturbances of the ionosphere appearing in the evening or around noon at mid-latitudes on the storm developing stage, may be caused by equatorward meridional wind arising from a pressure gradient in the upper atmosphere, though the effects of electric fields cannot be ruled out.The Dst part of ionospheric storms persisting over several days may be caused by changes in atmospheric composition arising from global convective motion of the upper atmosphere.Equatorial ionospheric storms are probably caused by changes in east-west electric fields in the equatorial ionosphere arising probably from disturbance electric currents flowing at the polar region.  相似文献   

6.
The diagnostic and communication possibilities, based on resonant properties of ionospheric magnetoplasma near the Equator, are discussed for a wide spectral range of electromagnetic waves. The utilization of geometrical resonances of both natural and artificial origin and plasma eigenmodes are considered for a model of anisotropic heterogeneous collisional magnetoplasma at low latitudes. The possibilities of linear and non-linear wave transformation and scattering, together with the orthogonality of ionospheric gradients and geomagnetic fields, are illustrated. The threshold and self-oscillation phenomena, stimulated by heating, produced by an equatorial electrojet, photo-electrons and powerful transmitters, are examined.Non-stationary electromagnetic processes, accompanied by the transversal transport phenomena in a magnetoplasma near the equatorial plane, are discussed and the tendencies of resonant effects employment for active diagnostic and remote communication at low latitudes are also considered.  相似文献   

7.
In this paper some theories and experimental data on the electric fields and currents in the ionosphere are reviewed. Electric fields originating in the polarization of the ionosphere as well as in local irregularities are considered. Special attention is paid to field-aligned currents as a regulator of the intensity and configuration of the ionospheric polarization field, the anomalous resistivity being one of the most important characteristics of the magnetospheric plasma. Present-day models of the magnetosphere and corresponding electric field generation mechanisms are discussed. Various models of the DP1 current system are considered and the main characteristics that allow us to distinguish between them are listed. Experimental data on the ionospheric electric field are considered; a modified model of Silsbee and Vestine is shown to fit these data reasonably well.  相似文献   

8.
Polar auroras     
Conclusion We have reviewed the somewhat conflicting data which have accumulated on such a vast scale in recent years. It is now becoming clearer which studies are likely to produce significant results, and this in itself may be a very important consequence of the assimilation of accumulated data. We must however ask in conclusion: does the outer radiation belt exist during the polar aurora? If the interplanetary media or the solar wind, carry magnetic fields, then these fields can be of two kinds. Firstly, they may be magnetic lines of force dragged by the plasma from the Sun. Secondly, the interplanetary medium or the solar wind are capable of carrying closed magnetic lines of force which are not related to the Sun. When such fields approach the Earth, the high-latitude geomagnetic lines of force which previously passed through the equatorial plane on the boundary of the magnetosphere, may deform in such a way as to pass out of one geomagnetic poles, miss the equatorial plane, enter the interplanetary plasma, and after passing through a very considerable volume of this plasma reach the other geomagnetic pole. This will in effect amount to an attachment through the medium of magnetic lines of force of enormous regions of ionised interplanetary matter or of solar wind to the Earth's magnetosphere. As these extraneous magnetic fields depart from the Earth's neighbourhood, the original dipole field will be reestablished. Rapid variations in the configuration of the geomagnetic field will occur during the interaction. It is possible that energetic particles appear with a very high degree of probability on the boundary of the geomagnetic field during such deformations. If this is so, then the outer radiation belt is merely a temporary formation appearing during the quiet intervals between geomagnetic disturbances, and containing a small residue of energetic charged particles, which exist during the polar auroras but do not succeed in entering the lower atmosphere during this time. In this process the particles giving rise to the polar auroras originate in the plasma of the solar corpuscular streams flowing past the Earth.Under the action of a solar wind the geomagnetic field is compressed at the front and elongated at the rear. This resembles the original Chapman theory of geomagnetic storms more closely than any other theory. Since the elongated geomagnetic field on the night side of the Earth is of a lower intensity, it may be associated with the magnetic fields brought in by the incident medium right down to very great depths. This may be responsible for the observed displacement at the zone of the polar auroras towards lower geomagnetic latitudes at night.Translated by the Express Translation Servies, Wimbledon, London.  相似文献   

9.
In this paper I am reviewing recent advances and open disputes in the study of the terrestrial ring current, with emphasis on its storm-time dynamics. The ring current is carried by energetic charged particles flowing toroidally around the Earth, and creating a ring of westward electric current, centered at the equatorial plane and extending from geocentric distances of about 2 R E to roughly 9 R E. This current has a permanent existence due to the natural properties of charged particles in the geospace environment, yet its intensity is variable. It becomes more intense during global electromagnetic disturbances in the near-Earth space, which are known as space (or magnetic or geomagnetic) storms. Changes in this current are responsible for global decreases in the Earth's surface magnetic field, which is the defining feature of geomagnetic storms. The ring current is a critical element in understanding the onset and development of space weather disturbances in geospace. Ring current physics has long been driven by several paradigms, similarly to other disciplines of space physics: the solar origin paradigm, the substorm-driver paradigm, the large-scale symmetry paradigm, the charge-exchange decay paradigm. The paper addresses these paradigms through older and recent important investigations.  相似文献   

10.
The atmospheric dynamo theory of the daily magnetic variations (S) has received substantial support from recent observational and theoretical work. In particular, several features of the variations, such as their remarkable enhancement close to the dip equator and other effects indicating a strong control by the main geomagnetic field, are well explained by the dynamo theory. Also the detection of ionospheric currents by instrumental rockets has confirmed an essential part of the theory.Considerable impetus was given to their study by the acquirement of much new data on magnetic variations during the IGY-IQSY period. Additional observations in the Pacific area were obtained during the IQSY by the establishment of four island stations equipped with newly developed magnetometers. A major advance at other stations was the development of automatic standard observatories using nuclear magnetometers.Several methods for the world-wide analysis of the S-field have been developed. A possibility now being studied is the completely automatic evaluation and construction by computers of ionospheric current charts for any day and any epoch UT.Some theoretical and statistical papers are briefly reviewed. These include discussions of the day-to-day variability of S, seasonal changes of the S-field, the nature of the equatorial electrojet, the possibility of solar wind effects contributing to the daily variations, and the modification of the dynamo theory to take account of the possible flow of electric current from the ionosphere along magnetic lines of force in the magnetosphere.Finally, an attempt to extend the dynamo theory of S by treating the ionosphere as a three-dimensional medium, instead of regarding it as a thin shell, has revealed that, although the relations between the horizontal components of electric field and current density in the dynamo layer are given with reasonable accuracy by the well-known layer equations, the assumption, implicit in the thin shell treatment, that the horizontal currents are non-divergent is not in fact true. Hence a revision of some earlier theoretical work on S appears necessary.  相似文献   

11.
The Near-Earth Plasma Environment   总被引:1,自引:0,他引:1  
An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth’s plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control ionospheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electrodynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances.  相似文献   

12.
Ionospheric Storms — A Review   总被引:2,自引:0,他引:2  
Buonsanto  M.J. 《Space Science Reviews》1999,88(3-4):563-601
In this paper, our current understanding and recent advances in the study of ionospheric storms is reviewed, with emphasis on the F2-region. Ionospheric storms represent an extreme form of space weather with important effects on ground- and space-based technological systems. These phenomena are driven by highly variable solar and magnetospheric energy inputs to the Earth's upper atmosphere, which continue to provide a major difficulty for attempts now being made to simulate the detailed storm response of the coupled neutral and ionized upper atmospheric constituents using increasingly sophisticated global first principle physical models. Several major programs for coordinated theoretical and experimental study of these storms are now underway. These are beginning to bear fruit in the form of improved physical understanding and prediction of ionospheric storm effects at high, middle, and low latitude. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The study of the electrical environment of the Earth's atmosphere has rapidly advanced during the past century. Great strides have been made towards the understanding of lightning and thunderstorms and in relating them to the global electric circuit. The electromagnetic fields and currents connect different parts of the Earth's environment, and any type of perturbation in one region affects another region. Starting from the traditional views in which the electrodynamics of one region has been studied in isolation from the neighboring regions, the modern theory of the global electrical circuit has been discussed briefly. Interconnection and electrodynamic coupling of various regions of the Earth's environment can be easily studied by using the global electric circuit model. Deficiencies in the model and the possibility of improvement in it have been suggested. Application of the global electric circuit model to the understanding of the Earth's changes of climate has been indicated.  相似文献   

14.
The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (~1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10?7 S?m?1 (for poorly conducting rocks) to 10?2 S?m?1 (for clay or wet limestone), with a mean value of 3.2 S?m?1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ~10?14 S?m?1 just above the surface to 10?7 S?m?1 in the ionosphere at ~80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ~1 pA m?2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (~+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ~130 V?m?1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.  相似文献   

15.
The recent development of several new observational techniques as well as of advanced computer simulation codes has contributed significantly to our understanding of dynamics of the three-dimensional current system during magnetospheric substorms. This paper attempts to review the main results of the last decade of research in such diverse fields as electric fields and currents in the high-latitude ionosphere and field-aligned currents and their relationship to the large-scale distribution of auroras and auroral precipitation. It also contains discussions on some efforts in synthesizing the vast amount of the observations to construct an empirical model which connects the ionospheric currents with field-aligned currents. While our understanding has been greatly improved during the last decade, there is much that is as yet unsettled. For example, we have reached only a first approximation model of the three-dimensional current system which is not inconsistent with integrated, ground-based and space observations of electric and magnetic fields. We have just begun to unfold the cause of the field-aligned currents both in the magnetosphere and ionosphere. Dynamical behaviour of the magnetosphere-ionosphere coupling relating to substorm variability can be an important topic during the coming years.On leave of absence from Kyoto Sangyo University, Kyoto 603, Japan.  相似文献   

16.
Several previous and new S3-3 satellite results on DC electric fields, field-aligned currents, and waves are described, interpreted theoretically, and applied to the understanding of auroral particle acceleration at altitudes below 8000 km. These results include the existence of two spatial scale sizes (less than 0.1 degree and a few degrees invariant latitude) in both the perpendicular and parallel electric fields; the predominance of S-shaped rather than V-shaped equipotential contours on both spatial saales; the correlated presence of field-aligned currents, low frequency wave turbulence, coherent ion cyclotron wave emissions and accelerated upmoving ions and downgoing electrons; intense waves inside electrostatic shocks and important wave-particle interactions therein; correlations of field-aligned currents with magnetospheric boundaries that are determined by convection electric field measurements; electron acceleration producing discrete auroral arcs in the smaller scale fields and producing inverted-V events in the larger scale fields; ion and electron acceleration due to both wave-particle interactions and the parallel electric fields. Further analyses of acceleration mechanisms and energetics are presented.Also Department of Physics.  相似文献   

17.
Dynamical simulations have been developed at IASB-BIRA to model the deformations of the plasmasphere during geomagnetic substorms and other variations in the level of geomagnetic activity. The simulations are based on the mechanism of plasma instability and use the empirical Kp-dependent electric field E5D. The results of the simulations are compared with IMAGE observations that provide the first global comprehensive images of the Earth’s plasmasphere. The predicted plasmapause positions correspond generally rather satisfactorily with the EUV observations. The plasmasphere is rather extended in all MLT sectors during quiet periods. During or just after geomagnetic substorms, the plasmaspause is sharper and becomes closer to the Earth in the night sector. Periods of enhanced geomagnetic activity are associated to the formation of plumes that rotate with the plasmasphere. The simulations reproduce the formation and the motion of these plumes, as well as the development of other structures like shoulders observed at the plasmapause by EUV on IMAGE.  相似文献   

18.
As a contribution to the International Magnetospheric Study (IMS, 1976–1979) a two-dimensional array of 42 temporary magnetometer stations was run in Scandinavia, supplementary to the permanent observatories and concentrated in the northern part of the region. This effort aimed at the time-dependent (periods above about 100 s) determination of the two-dimensional structure of substorm-related magnetic fields at the Earth's surface with highest reasonable spatial resolution (about 100 km, corresponding to the height of the ionosphere) near the footpoints of field-aligned electric currents that couple the disturbed magnetosphere to the ionosphere at auroral latitudes. It has been of particular advantage for cooperative studies that not only simultaneous data were available from all-sky cameras, riometers, balloons, rockets, and satellites, but also from the STARE radar facility yielding colocated two-dimensional ionospheric electric field distributions. In many cases it therefore was possible to infer the three-dimensional regional structure of substorm-related ionospheric current systems. The first part of this review outlines the basic relationships and methods that have been used or have been developed for such studies. The second short part presents typical equivalent current patterns observed by the magnetometer array in the course of substorms. Finally we review main results of studies that have been based on the magnetometer array observations and on additional data, omitting studies on geomagnetic pulsations. These studies contributed to a clarification of the nature of auroral electrojets including the Harang discontinuity and of ionospheric current systems related to auroral features such as the break-up at midnight, the westward traveling surge, eastward drifting omega bands, and spirals.  相似文献   

19.
The study of the electrical environment of the Earth’s atmosphere has rapidly advanced during the past century. Great strides have been made towards the understanding of lightning and thunderstorms and in relating them to the global electric circuit. The electromagnetic fields and currents connect different parts of the Earth’s environment, and any type of perturbation in one region affects another region. Starting from the traditional views in which the electrodynamics of one region has been studied in isolation from the neighboring regions, the modern theory of the global electrical circuit has been discussed briefly. Interconnection and electrodynamic coupling of various regions of the Earth’s environment can be easily studied by using the global electric circuit model. Deficiencies in the model and the possibility of improvement in it have been suggested. Application of the global electric circuit model to the understanding of the Earth’s changes of climate has been indicated.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号