首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
On Earth thermal conductivity measurements on liquids are difficult to perform because thermal motions due to convection. In microgravity the convection due to buoyancy is evanescent and we expect a strong lowering of Rayleigh and Nusselt numbers. Three low viscosity liquids are selected to carry out the measurements: distilled water (standard) and two silicone oils. We use a modified “hot plate” method with a simplified guard ring, the lowering of convective motions let us to use in the experimental cells larger interplate distances and/or temperature differences than in earth measurements so the accuracy must be improved. Comparisons between Earth and orbit results may help to understand the convection occurrence in our cells. G-300 payload is cantilevered from the experiment mounting plate (EMP) and it includes: four struts, an intermediate plate, a bottom plate with four bumpers, a battery box, an electronic rack and six experimental cells assembled in twin-packs thermally coupled with the EMP. Thermal, vibration and EMI tests have proved that the design satisfies the Nasa requirements and acceptance is in progress.  相似文献   

2.
Influence of the gravitational vertical on geometric visual illusions   总被引:1,自引:0,他引:1  
Clément G  Eckardt J 《Acta Astronautica》2005,56(9-12):911-917
The occurrence of geometric orientation illusions and the perception of ambiguous figures were analyzed in 24 subjects during static body tilt relative to gravity on Earth. Results showed that illusions such as the Rock's diamond/square, the Ponzo illusion, and orientation contrast illusions occurred less frequently, and that depth reversal of ambiguous figures took more time when subjects were lying on their side or supine compared to upright, thus suggesting that the gravitational reference plays a significant role in these “visual” illusions. The structure of images, our representation of the environment, and orientation relative to gravity are all integral parts in interpreting visual images. In a weightless environment where no gravitational reference can be used, it is expected that similar alterations in visual perception will occur.  相似文献   

3.
为了实现对航天器在轨泄漏漏孔形状的准确辨识,提出基于小波包能量谱和支持向量机的航天器在轨泄漏辨识方法。首先分析圆形、长方形、正三角形3种典型形状漏孔之泄漏信号的频域特点,之后运用小波包能量谱提取不同形状漏孔泄漏信号的特征值,最后运用提取的特征值配合支持向量机建立辨识模型,实现对漏孔具体形状的辨识。对该辨识方法进行试验验证,将3种形状的漏孔分为A、B两组,利用A组漏孔进行泄漏信号特征值提取与辨识模型的训练,再对B组漏孔进行辨识准确率测试;结果表明该方法可以实现对不同形状漏孔的辨识,在合适的小波包分解层数下,总体辨识准确率可达95.9%。  相似文献   

4.
This paper models the combustion of a turbulent homogeneous mixture of propane and air within a duct having a stationary one-dimensional mean flow. The Bray-Moss model is applied to the closure of the chemical production terms, using a probability density function (pdf) of the temperature which is chosen as the characteristic variable. Under the conditions chosen for the study, chemical kinetic factors are important and the conventional assumption, that heat release is controlled by turbulent mixing, is not valid. The chemical model of Edelman and Fortune for the combustion of hydrocarbons is used and simplifying assumptions are made which reduce the systems of unknowns to that of the temperature alone. This leads to the introduction of two chemical production terms which are defined respectively in a “delay zone”, where the heat release is modest, and a “combustion zone”. The required equations for the Favre-averaged temperature, turbulence kinetic energy and the mean square fluctuation of the temperature are solved numerically. In the delay zone, a comparison is made between a second order Borghi type closure and the pdf closure. Good agreement is found in the case of relatively small turbulence intensity. It is shown that the pdf formulation does not require the two zones to be spatially distinct. Differing chemical source terms can be discriminated instantaneously by the reaction progress variable and contributions to the average production terms appropriately apportioned by its pdf. Predictions are made of the profiles of mean temperature and mean square fluctuation under different initial turbulence levels.  相似文献   

5.
Trajectories are calculated by the boundary-integral method for two contaminated deformable drops under the combined influence of buoyancy and a constant temperature gradient at low Reynolds number and with negligible thermal convection. The surfactant is bulk-insoluble, and its coverage is determined by solution of the time-dependent convective-diffusion equation. Two limits are considered. For small drops, the deformation is small, and thermocapillary and buoyant effects are of the same order of magnitude. In this case, comparison is made with incompressible surfactant results to determine when surfactant redistribution becomes important. Convection of surfactant can lead to elimination of interesting features, such as the possibility of two different-sized drops migrating with fixed separation and orientation, and can increase the difference between the drops' velocities. For larger drops, deformation can be significant, leading to smaller or larger drop breakup, and buoyant motion dominates thermocapillarity. In this case, convection of surfactant can increase deformation and offset previously observed inhibition of breakup for clean drops when the driving forces are opposed. This effect is less pronounced for larger size ratios. By extension, redistribution of surfactant can enhance deformation-increasing tendencies seen with driving forces aligned in the same direction.  相似文献   

6.
CCD相机调试和质量评估中MTF测量的一些体会   总被引:2,自引:0,他引:2  
CCD是采样器件,不能按照严格理论测量MTF,但光学遥感中仍采用调制度测量作为像质评价尤其是相机调试的重要手段。文中先用简单易理解的方法演算CCD(几何尺寸)正弦波调制度为基础,讨论矩形靶标调制度与正弦靶标区别,靶标相位误差对测量的影响并指出采用测量最大调制度及其技术措施的方法。  相似文献   

7.
The DACON instrument for studying the convection caused by low frequency microaccelerations aboard spacecraft is described. The convection sensor serves as a measuring element of this instrument. This is a cylindrical cavity filled with air, where two crossed differential thermocouples are located. The thermocouple junctions lay on two mutually perpendicular lines parallel to the bases of the cylinder and crossing at its axis. The distances from the junctions to this axis are equal. The lateral surface of the cylinder is thermally insulated, the difference of temperatures on its bases being kept constant. One of the tasks for the sensor is to prepare the data for checking the adequacy of mathematical models of fluid convection under weightlessness conditions and for obtaining quantitative characteristics of the microgravitational medium. The results of ground-based tests of the DACON instrument and the results of experiments with it aboard the Mirstation are presented.  相似文献   

8.
This study analyses the effect of temperature difference between hot and cool disk (ΔT), and non-dimensional liquid bridge volume (V/Vo) on the transition process from steady thermocapillary convection to periodic or chaotic thermocapillary convection in a liquid bridge modeled after the floating zone method under normal gravity and microgravity conditions. From normal gravity and drop shaft experiments, the difference of the regime of the steady state and the oscillatory state was clarified on the ΔTV/Vo plane under 1 g and μg conditions. A gap or stability region was observed in the specific V/Vo range under 1 g conditions. In the gap or stable region, after the gravity changed from 1 g to μg conditions, the temperature signals showed oscillation. From these results, the critical temperature difference under the μg conditions appeared to be smaller than that under the 1 g conditions. Temperature signals were defined as 6 different types of states. The various temperature oscillatory state regimes were obtained on a ΔTV/Vo plane under 1 g and μg conditions. Under μg conditions, in these experimental conditions, all temperature oscillatory states exhibited only the Periodic state.  相似文献   

9.
Experimental results are reported for small signal gain distribution across a cavity of a mixed flow gasdynamic laser system at different turbulent supersonic mixing regimes. It is shown that the temperature range of the GDL generation regime can be extended up to 7000°K, and gain coefficients as high as 3.5 m−1 be attained in a “double-freeze” supersonic gas flow. Basic advantages are discussed as well as the opportunity to obtain higher efficiencies in thermally pumped laser systems.  相似文献   

10.
Pozzo T  Berthoz A  Popov C 《Acta Astronautica》1995,36(8-12):727-732
Here are reported preliminary results of the “Synergy” experiment performed aboard the Russian orbital station “MIR” in July 1993 (Altaïr Mission). The experiment was carried out before, during, and after the space flight of two astronauts (S1 and S2). The duration of the flight was 21 days for S1 and 6 month for S2. The subjects were tested during preflight, inflight and postflight. The astronaut subjects were fixed on the ground by the feet. They were asked to pick up a box in front of them on the ground. Two velocities of movement and two distances of the target to be reached were tested. The movement of several small markers placed on the body was recorded on video tape.

Results show that the shape of head and hand trajectories in the sagittal plane remains roughly the same during the flight in spite of the modification of mechanical constraints. Trajectory invariance does not result in joint angular displacement invariance. These data indicate that the planning of the movement takes place in terms of head and hand trajectories rather than joint rotations as it was previously suggested for simple arm reaching movement.  相似文献   


11.
应用工程软件ANSYS的参数化设计语言(APDL)编制程序,建立了复合材料瞬态温度场和烧蚀的物理数学模型,利用"杀死"单元的方法实现动边界退移的烧蚀与热传导耦合计算,从而完成了对烧蚀尺寸变化的定量描述;采用AN-SYS中处理相变的方法,通过定义材料随温度变化的焓来考虑潜热。考虑了纤维的烧蚀、树脂分解以及辐射和对流热损失,对炭纤维/环氧叠层复合材料在不同辐射时间下激光烧蚀的温度场和烧蚀率进行数值计算,并分析了烧蚀特性和烧蚀机理,计算结果与实验结果吻合较好,可为复合材料热载荷下的失效分析和抗激光加固技术设计提供理论基础。  相似文献   

12.
A mathematical model for the solar radiation forces and moments acting on a square plate (platform) in orbit is obtained by considering the plate mode shapes as combinations of free-free beam shape functions. The moment expressions for a plate of arbitrary reflectivity coefficient are obtained as a function of the solar incidence angle. It is seen that only the first three flexible modes of the plate generate a first order net moment about the center of mass, and that the solar radiation pressure does not influence the flexible modes of the plate for small amplitude vibrations. The solar radiation disturbance model is then included in the dynamic model of a square plate nominally oriented along the local vertical and having the major surface of the plate normal to the orbital plane. The roll angle of the plate is seen to increase steadily due to the solar radiation pressure whereas the pitch and yaw motions oscillate with an amplitude of approximately 0.2° for a 100 m square thin aluminum plate in synchronous orbit. To control the shape and orientation of the plate two point actuators are assumed—one whose force axis is normal to the plane of the plate, the second with a force axis in the plane of the plate. The control law and the feedback gain values are obtained based on linear quadratic Gaussian methods. Transient responses and control requirements are simulated for local vertical and horizontal orientations.  相似文献   

13.
14.
Claudio Maccone   《Acta Astronautica》2006,58(12):662-670
A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth–Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement.The mathematical theory developed by the author in the years 2002–2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth–Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:
(1) the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);
(2) the asteroid's size and density (also supposed to be known from astronomical observations of various types);
(3) the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;
(4) the distance from the Earth of the two Lagrangian points L1 and L3 where the defense missiles are to be housed;
(5) the deflecting missile's data, namely its mass and especially its “extra-boost”, that is, the extra-energy by which the missile must hit the asteroid to achieve the requested minimal deflection outside the security radius around the Earth.
This discovery of the simple “asteroid deflection law” presented in this paper was possible because:
(1) In the vicinity of the Earth, the hyperbola of the arriving asteroid is nearly the same as its own asymptote, namely, the asteroid's hyperbola is very much like a straight line. We call this approximation the line/circle approximation. Although “rough” compared to the ordinary Keplerian theory, this approximation simplifies the mathematical problem to such an extent that two simple, final equations can be derived.
(2) The confocal missile trajectory, orthogonal to this straight line, ceases then to be an ellipse to become just a circle centered at the Earth. This fact also simplifies things greatly. Our results are thus to be regarded as a good engineering approximation, valid for a preliminary astronautical design of the missiles and bases at L1 and L3.
Still, many more sophisticated refinements would be needed for a complete Planetary Defense System:
(1) taking into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3;
(2) adding more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth–Moon system or from the surface of the Moon itself;
(3) encompassing the full range of missiles currently available to the USA (and possibly other countries) so as to really see “which missiles could divert which asteroids”, even just within the very simplified scheme proposed in this paper.
In summary: outlined for the first time in February 2002, our Confocal Planetary Defense concept is a simplified Keplerian Theory that already proved simple enough to catch the attention of scholars, popular writers, and representatives of the US Military. These developments would hopefully mark the beginning of a general mathematical vision for building an efficient Planetary Defense System in space and in the vicinity of the Earth, although not on the surface of the Earth itself!We must make a real progress beyond academic papers, Hollywood movies and secret military plans, before asteroids like 99942 Apophis get close enough to destroy us in 2029 or a little later.  相似文献   

15.
The different types of convective phenomena which may occur during the dendritic solidification of metallic alloys are discussed from an order of magnitude analysis. Bulk thermal convection and/or interdendritic solutal convection have to be considered according to the values of the experimental data. Scaling laws for the solute boundary layer resulting from bulk thermal convection have already been derived. It is shown here that the interdendritic flow depends on a solutal Grashof number Gr based on the horizontal density gradient and a characteristic length Ls which is of the order of the liquid channels width. For Gr < 1, which is generally verified in practical cases, the interdendritic flow velocity Ur is proportional to the Grashof number. This a priori law compares favorably with the results of horizontal solidification experiments where the mean interdendritic flow velocity has been estimated from the resulting measured macrosegregation. In these experiments, as well as for most horizontal dendritic solidifications of metallic alloys at 1 g, the ratio UrR (R is the growth rate) is of order one. In order to cancel the interdendritic flow effects, this ratio has to be lowered by one order of magnitude. According to our analysis, this can be obtained by performing the experiments either at a slightly reduced g level (~10?1 g), or at 1 g in a vertical stable configuration with a sufficiently low residual horizontal thermal gradient.  相似文献   

16.
The effects of small vibrations on Marangoni convection were investigated experimentally using a liquid bridge of 5 cSt silicone oil with a disk diameter of 7.0 mm, and an aspect ratio close to 0.5. Experiments were performed to determine the critical temperature difference data for no vibration case and with small vibrations applied. The experimental results have shown that the effect of small vibrations on the onset of oscillatory flow is small since the critical temperature difference data for different aspect ratios were not affected by the vibrations. To clarify the surface oscillation phenomena induced by external vibrations, a 3-D numerical simulation model was also developed using a level set algorithm to predict the surface oscillations of isothermal silicone oil bridges. By subjecting the liquid bridge to small vibrations, the surface oscillation characteristics were predicted numerically, and the numerical results compared well with the predictions of an analytical model proposed previously. Furthermore, the effect of small vibrations on the surface vibration amplitude of the liquid bridge is also discussed.  相似文献   

17.
红外灯热流分布试验研究   总被引:4,自引:2,他引:2  
文章采用蒙特卡罗法建立了红外灯单灯热流分布模型并在真空低温环境下进行了红外灯热流分布测试,以验证模型的准确性。测试在KM2空间环境模拟器中进行,采用黑片作为热流传感器。测试过程避免了空气对流对测试的影响,确保了测试数据的准确。对比分析表明,模型计算结果与实测结果偏差在5%以内,满足设计要求,可以作为红外灯阵热流分布模型的建立和红外灯阵热流优化的基础。  相似文献   

18.
王琳  杨欢庆 《火箭推进》2013,39(1):58-64
Sr变质潜伏时间延长除了给生产带来很多不便外,还会造成Sr烧损增加,变质效果衰退以及铝合金表面氧化-吸氢加剧,对合金造成污染,其中液态金属温度,液态金属的对流强度,Al-Sr合金的几何尺寸及表面状态是影响Sr变质潜伏时间的重要因素。通过建立物理模型,对Sr扩散过程进行流场模拟计算,并进行了试验验证。通过工艺改进,Sr变质潜伏时间由60分钟,缩短至20分钟,变质后合金性能优良,Al-Sr合金取得了良好的变质效果。  相似文献   

19.
A fluid-dynamic model of two non-coalescing liquid drops of the same liquid, pressed against one another in the presence of thermocapillary convection, is proposed to correlate experimental results on the deformation of the drop surfaces, on the pressure distribution and on the thickness of the air film between the drops. The two-point boundary value problem for the Gauss-Laplace hydrostatic equation, subjected to the constant volume constraint, is solved by a shooting method to evaluate the shapes of the drops for different values of the applied pressure jump across the surface exposed to a constant pressure ambient. The flow fields in the liquid drops and in the air layer are obtained by numerical solutions of the dynamic problem. The numerical results which qualitatively agree with the experimental ones, explain why an air film could be created between the two drops and show that film thicknesses of some microns exist with excess pressures of the same order of magnitude of the pressure needed to deform the drops.  相似文献   

20.
The purpose of “Vitamin” experiment is to study the efficiency of protective substances on three biological acellular systems aqueous solutions exposed to cosmic radiation in space. The first system “LDL”is a low density lipoprotein. The second is “E2-TeBG complexe” in which estradiol (E2) is bound to its plasmatic carrier protein, testosterone-estradiol binding globulin (TeBG). The third is “pBR 322”, a plasmid. “Vitamin” experiment was accomodated in the Biopan which had been mounted on the outer surface of a Foton retrievable satellite. The experiment was exposed to space environment during 15 days. A stable temperature of about 20 °C was maintained throughout the flight. “Vitamin” experiment preliminary results are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号