首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently available observational constraints on transport mechanisms in pre-main sequence disks are reviewed. The main observable quantity accessable by imaging the spatial structure of disks is the mass accretion rate, which constrains angular momentum transport, and migration and diffusion of disk material. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Resonantly Excited Non-linear Density Waves in Disk Systems   总被引:1,自引:0,他引:1  
Chi Yuan 《Space Science Reviews》2002,102(1-4):121-138
Most of the disk systems are characterized by spiral structures. A good portion of these spiral structures can be identified as waves resonantly excited by a perturber in or pertaining to the same system. For planetary rings, this is an exterior satellite; for galactic disks, a rotating bar; for proto-stellar disks (yet to be confirmed), this would be a proto-planet. These waves, not just responsible for the present morphology of the disks, also play a dominating role on evolution of the disks. Resonance excitation is a extremely effective mechanism. A relatively weak perturbation can result in a highly non-linear responses in the disk. Therefore, non-linear theory is a necessity here. We will examine the non-linear theory of resonance excitation and discuss the applications of the theory to Saturn's rings and disk galaxies in this paper.  相似文献   

3.
Hueso  Ricardo  Guillot  Tristan 《Space Science Reviews》2003,106(1-4):105-120
The formation of planetary systems is intimately tied to the question of the evolution of the gas and solid material in the early nebula. Current models of evolution of circumstellar disks are reviewed here with emphasis on the so-called “alpha models” in which angular momentum is transported outward by turbulent viscosity, parameterized by an dimensionless parameter α. A simple 1D model of protoplanetary disks that includes gas and embedded particles is used to introduce key questions on planetesimal formation. This model includes the aerodynamic properties of solid ice and rock grains to calculate their migration and growth. We show that the evolution of the nebula and migration and growth of its solids proceed on timescales that are generally not much longer than the timescale necessary to fully form the star-disk system from the molecular cloud. Contrary to a widely used approach, planet formation therefore can neither be studied in a static nebula nor in a nebula evolving from an arbitrary initial condition. We propose a simple approach to both account for sedimentation from the molecular cloud onto the disk, disk evolution and migration of solids. Giant planets have key roles in the history of the forming Solar System: they formed relatively early, when a significant amount of hydrogen and helium were still present in the nebula, and have a mass that is a sizable fraction of the disk mass at any given time. Their composition is also of interest because when compared to the solar composition, their enrichment in elements other than hydrogen and helium is a witness of sorting processes that occured in the protosolar nebula. We review likely scenarios capable of explaining both the presence of central dense cores in Jupiter, Saturn, Uranus and Neptune and their global composition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The origin of the regular satellites ties directly to planetary formation in that the satellites form in gas and dust disks around the giant planets and may be viewed as mini-solar systems, involving a number of closely related underlying physical processes. The regular satellites of Jupiter and Saturn share a number of remarkable similarities that taken together make a compelling case for a deep-seated order and structure governing their origin. Furthermore, the similarities in the mass ratio of the largest satellites to their primaries, the specific angular momenta, and the bulk compositions of the two satellite systems are significant and in need of explanation. Yet, the differences are also striking. We advance a common framework for the origin of the regular satellites of Jupiter and Saturn and discuss the accretion of satellites in gaseous, circumplanetary disks. Following giant planet formation, planetesimals in the planet’s feeding zone undergo a brief period of intense collisional grinding. Mass delivery to the circumplanetary disk via ablation of planetesimal fragments has implications for a host of satellite observations, tying the history of planetesimals to that of satellitesimals and ultimately that of the satellites themselves. By contrast, irregular satellites are objects captured during the final stages of planetary formation or the early evolution of the Solar System; their distinct origin is reflected in their physical properties, which has implications for the subsequent evolution of the satellites systems.  相似文献   

5.
A problem of modeling the incompressible viscous flow between two disks taking into account the rotation of one of them is considered. We study the effect of the disk angular velocity (flow regimes) in the interdisk spacing, finiteness (infiniteness) of disk radiuses, calculation region configuration as well as distances between disks on the flow characteristics, particularly, on the resistance moment coefficient. Numerical simulation is performed with the aid of Maple and ANSYS Fluent software.  相似文献   

6.
反向旋转盘腔内部流动特性   总被引:1,自引:0,他引:1  
对反向旋转盘腔系统内部流动特性进行了数值模拟,计算结果与已有文献中的实验结果对比表明,采用的数学模型和计算方法是准确的.数值模拟结果表明:反向旋转盘腔内流动结构较为复杂,转速比对流动结构有重要影响.根据流动结构特点研究了旋转雷诺数和转速比对盘腔内压力分布以及转盘壁面摩擦力矩的影响,旋转雷诺数越大,盘腔内的压力越低,转盘壁面的摩擦力矩越大.反向同速旋转有助于增大盘腔内的压力,但与其他转速比相比其摩擦力矩最大.   相似文献   

7.
This paper is an introduction to volume 56 of the Space Science Series of ISSI, “From disks to planets—the making of planets and their proto-atmospheres”, a key subject in our quest for the origins and evolutionary paths of planets, and for the causes of their diversity. Indeed, as exoplanet discoveries progressively accumulated and their characterization made spectacular progress, it became evident that the diversity of observed exoplanets can in no way be reduced to the two classes of planets that we are used to identify in the solar system, namely terrestrial planets and gas or ice giants: the exoplanet reality is just much broader. This fact is no doubt the result of the exceptional diversity of the evolutionary paths linking planetary systems as a whole as well as individual exoplanets and their proto-atmospheres to their parent circumstellar disks: this diversity and its causes are exactly what this paper explores. For each of the main phases of the formation and evolution of planetary systems and of individual planets, we summarize what we believe we understand and what are the important open questions needing further in-depth examination, and offer some suggestions on ways towards solutions.We start with the formation mechanisms of circumstellar disks, with their gas and disk components in which chemical composition plays a very important role in planet formation. We summarize how dust accretion within the disk generates planet cores, while gas accretion on these cores can lead to the diversity of their fluid envelopes. The temporal evolution of the parent disk itself, and its final dissipation, put strong constraints on how and how far planetary formation can proceed. The radiation output of the central star also plays an important role in this whole story. This early phase of planet evolution, from disk formation to dissipation, is characterized by a co-evolution of the disk and its daughter planets. During this co-evolution, planets and their protoatmospheres not only grow, but they also migrate radially as a result of their interaction with the disk, thus moving progressively from their distance of formation to their final location. The formation of planetary fluid envelopes (proto-atmospheres and oceans), is an essential product of this planet formation scenario which strongly constrains their possible evolution towards habitability. We discuss the effects of the initial conditions in the disk, of the location, size and mass of the planetary core, of the disk lifetime and of the radiation output and activity of the central star, on the formation of these envelopes and on their relative extensions with respect to the planet core. Overall, a fraction of the planets retain the primary proto-atmosphere they initially accreted from the gas disk. For those which lose it in this early evolution, outgassing of volatiles from the planetary core and mantle, together with some contributions of volatiles from colliding bodies, give them a chance to form a “secondary” atmosphere, like that of our own Earth.When the disk finally dissipates, usually before 10 Million years of age, it leaves us with the combination of a planetary system and a debris disk, each with a specific radial distribution with respect to their parent star(s). Whereas the dynamics of protoplanetary disks is dominated by gas-solid dynamical coupling, debris disks are dominated by gravitational dynamics acting on diverse families of planetesimals. Solid-body collisions between them and giant impacts on young planetary surfaces generate a new population of gas and dust in those disks. Synergies between solar system and exoplanet studies are particularly fruitful and need to be stimulated even more, because they give access to different and complementary components of debris disks: whereas the different families of planetesimals can be extensively studied in the solar system, they remain unobserved in exoplanet systems. But, in those systems, long-wavelength telescopic observations of dust provide a wealth of indirect information about the unobserved population of planetesimals. Promising progress is being currently made to observe the gas component as well, using millimetre and sub-millimetre giant radio interferometers.Within planetary systems themselves, individual planets are the assembly of a solid body and a fluid envelope, including their planetary atmosphere when there is one. Their characteristics range from terrestrial planets through sub-Neptunes and Neptunes and to gas giants, each type covering most of the orbital distances probed by present-day techniques. With the continuous progress in detection and characterization techniques and the advent of major providers of new data like the Kepler mission, the architecture of these planetary systems can be studied more and more accurately in a statistically meaningful sense and compared to the one of our own solar system, which does not appear to be an exceptional case. Finally, our understanding of exoplanets atmospheres has made spectacular advances recently using the occultation spectroscopy techniques implemented on the currently operating space and ground-based observing facilities.The powerful new observing facilities planned for the near and more distant future will make it possible to address many of the most challenging current questions of the science of exoplanets and their systems. There is little doubt that, using this new generation of facilities, we will be able to reconstruct more and more accurately the complex evolutionary paths which link stellar genesis to the possible emergence of habitable worlds.  相似文献   

8.
克服旋转飞行器螺旋运动的方法研究   总被引:1,自引:0,他引:1  
易彦  王洲辉 《飞行力学》2001,19(1):81-84
旋转飞行器虽然具有内在稳定性,但在飞行过程中一些不确定因素会导致飞行器产生螺旋运动,而非理想的关于角动量矢量纯粹的旋转运动。结合旋转飞行器自身的特点,借鉴自旋卫生的被动章动阻尼的方法,提出了一种通过主动控制飞行器内部质量块的运动使得飞行器碑的惯量主轴发生偏移,惯量矩阵由原来的对称阵变为含有非零非对角元素的矩阵,从而改变飞行器的姿态角运动来克服螺旋运动的方法,这将有助于提高旋转飞行器的资态控制精度。以某型旋转飞行器为背景进行仿真研究,计算结果证实了该方法的有效性和可行性。  相似文献   

9.
In this chapter, I present a summary of observational tests of the basic picture of disk accretion. An emphasis is placed on tests relevant to black holes, but many of the fundamental results are drawn from studies of other classes of systems. Evidence is discussed for the basic structures of accretion flows. The cases of systems with and without accretion disks are discussed, as is the evidence that disks actually form. Also discussed are the hot spots where accretion streams impact the disks, and the boundary layers in the inner parts of systems where the accretors are not black holes. The nature of slow, large amplitude variability is discussed. It is shown that some of the key predictions of the classical thermal-viscous ionization instability model for producing outbursts are in excellent agreement with observational results. It is also show that there are systems whose outbursts are extremely difficult to explain without invoking variations in the rate of mass transfer from the donor star into the outer accretion disk, or tidally induced variations in the mass transfer rates. Finally, I briefly discuss recent quasar microlensing measurements which give truly independent constraints on the inner accretion geometry around black holes.  相似文献   

10.
We discuss pickup ion acceleration and transport near the solar wind termination shock from the perspective of their spectral, spatial, and pitch-angle distributions. Our study is performed in the framework of a recently developed anisotropic transport model based on a Legendre polynomial expansion technique. Voyager 1 LECP angular distributions of 1 MeV protons, represented in the form of an expansion in spherical harmonics in the frame aligned with the measured interplanetary magnetic field, are used as benchmarks for our theory. We find the observed distributions consistent with our model predictions for particle acceleration and reflection at a highly oblique shock wave. It is shown that first-order (field aligned) anisotropy is a measure of shock obliquity while the second-order (transverse) anisotropy reflects the energy dependence of the particle scattering mean free path. We also discuss the role of enhanced scattering and momentum diffusion on the spectral properties of energetic charged particles.  相似文献   

11.
Summary From the extensive set of numerical calculations briefly described above, it seems apparent that rotating, isothermal gas clouds are unstable to fragmentation under a wide range of conditions. (Caution: This result for isothermal clouds cannot be generalized to all clouds, as is shown, for example, by Boss's analysis [these proceedings] of the stability of collapsing, adiabatic clouds.) It is of importance to note, however, that no fragmentation is apparent during a cloud's initial dynamic collapse toward a disk structure; rather it is the rotationally flattened disk/ring configuration that undergoes fragmentation. This is a considerably different picture of fragmentation than has been presented, for example, by Hoyle (1953).The degree of instability and the mode (ring vs. blob) of fragmentation is sensitive to , but insensitive to . The initial amplitude of a perturbation does not appear to be crucial--fragmentation should occur eventually even for low amplitude initial NAPs.Finally, it is of some interest to know what the properties are of the fragments that break out of these isothermal clouds. Before outlining these properties we emphasize that in this set of calculations we have specifically excited the m = 2 (binary) non-axisymmetric mode; hence we have in some sense suppressed the development of other modes and we have promoted the development of equal mass components in the binary systems. In these evolutions, a typical fragment contained 15% of the initial cloud mass; had a specific angular momentum 25–30% that of the original cloud; had a ratio of spin angular momentum to orbital angular momentum 0.2; and itself had a ratio of thermal to gravitational energy frag < 0.1. The formation of a binary system has therefore resulted in a conversion of some of the original cloud's spin angular momentum into orbital angular momentum, and has produced protostars with reduced specific angular momenta. It is also evident that each fragment is unstable to further collapse (having low ) under the isothermal assumptions imposed here.  相似文献   

12.
Planetary systems come in a bewildering variety of shapes and sizes. In addition to the exoplanetary systems with giant planets, found in surveys of stellar radial velocity variations, an overlapping class of dusty disk-containing solar systems exists. The disks include large quantities of meteoroids and dust, and a varying complement of gas. Their solid material represents `replenished' dust born in the collisions/sublimation of planetesimals perturbed by planets. We present several such systems, including HR 4796A, HD 141569, HD 100546, and the prototypical replenished disk of Beta Pictoris. We discuss the composition, physical processing, and migration of dust in the disks, their evolutionary status, and the evidence of embedded planets. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
研究了涡轴发动机模拟低压转子的动力学响应随系统参数的变化.首先基于涡轴发动机模拟低压转子,建立了弹性支承-两端带挤压油膜阻尼器的双盘转子动力学模型,推导了其运动微分方程.对于这个12维的动力学方程组,采用数值方法进行了求解.研究了转速、两盘偏心及其相位角、两盘质量比等对系统响应的影响.由计算结果可以看出,中间盘和外伸盘的相位差为π时,两个盘的振动响应都达到最小,而当两个盘的偏心相位相同时,其振动响应最大.中间盘的质量越大,两个盘的响应会越大;而当中间盘比外伸盘质量小很多时,系统的振动响应会降低.   相似文献   

14.
轮盘结构形状复杂,完全按照实际结构进行结构分析也非常困难。为此,将榫头沿根部从轮盘中分离出来,作为三维问题处理;剩下的盘体简化为轴对称问题。由于简化了盘体,忽略了局部的应力集中,为此,适当降低被简化部位的屈服应力以做补偿。这样处理是否合适,需要从得到的优化设计中取出被简化的部分进行三维弹塑性计算来校核。如不满足给定条件,调整后重新进行优化直至满足要求。   相似文献   

15.
A discussion is given of the role of dimensional fundamental constants in gravitational and particle physics. It is concluded that such constants can most usefully be interpreted as representing asymptotic states. This interpretation is in agreement with the widespread use of dimensional analysis in astronomy, and implies that angular momentum can be expected to vary like the mass squared in the astronomical limit of large masses.  相似文献   

16.
We discuss evolutionary processes in binaries where the primary becomes a red giant with a deep convective envelope before it fills its Roche lobe. Such binaries (late Case B or late Case C, if they evolve conservatively) ought to suffer drastic mass transfer, on a hydrodynamic timescale. In some circumstances this may lead to a common envelope, spiral-in, and finally either a very short-period binary or coalescence. But there appear to be other circumstances in which the outcome is an ordinary Algol, or a wide binary with a white dwarf companion as in Barium stars and some symbiotics. We try to demonstrate that stellar-wind mass loss, enhanced one or two orders of magnitude by tidal interaction with a companion, can vitally affect the approach to RLOF, and indeed may prevent RLOF in binaries with periods over 1000 d. Such mass loss is probably accompanied by angular momentum loss, by magnetic braking combined with tidal friction. The result is that it will not be easy to predict definitively the outcome of evolution in a given zero-age binary.  相似文献   

17.
为了研究航空高功率密度湿式摩擦离合器在油液冷却作用下的温度特性,基于计算流体动力学(computational fluid dynamics,CFD)方法建立了华夫槽湿式摩擦离合器的热特性分析模型;研究了湿式摩擦离合器中摩擦副上热流密度的计算方法和施加方式;运用热流耦合方法,考虑了油液的散热作用,分析了离合器内各对摩擦副上的油液分布及温度分布。研究结果表明:钢片上和摩擦片上的油液分布不均造成钢片和摩擦片上温度分布不均;不同钢片和摩擦片上的温度分布受片上油液分布及该片热传导性能的影响,呈现出不同的温度分布规律。   相似文献   

18.
We discuss evolutionary processes in binaries where the primary becomes a red giant with a deep convective envelope before it fills its Roche lobe. Such binaries (late Case B or late Case C, if they evolve conservatively) ought to suffer drastic mass transfer, on a hydrodynamic timescale. In some circumstances this may lead to a common envelope, spiral-in, and finally either a very short-period binary or coalescence. But there appear to be other circumstances in which the outcome is an ordinary Algol, or a wide binary with a white dwarf companion as in Barium stars and some symbiotics. We try to demonstrate that stellar-wind mass loss, enhanced one or two orders of magnitude by tidal interaction with a companion, can vitally affect the approach to RLOF, and indeed may prevent RLOF in binaries with periods over 1000 d. Such mass loss is probably accompanied by angular momentum loss, by magnetic braking combined with tidal friction. The result is that it will not be easy to predict definitively the outcome of evolution in a given zero-age binary.  相似文献   

19.
While the solar convection zone is very well mixed by its turbulent motions, chemical composition gradients build up in the radiative interior due to microscopic diffusion and settling, and to nuclear burning. Standard models, which ignore any type of macroscopic transport, cannot explain the depletion of lithium in solar-type stars, as they evolve; neither do they account for the observed profile of molecular weight at the base of the solar convection zone. Such macroscopic transport can be achieved through thermally driven meridian currents, through turbulent diffusion generated by differential rotation and possibly through gravity waves. These processes transport also angular momentum, and therefore the internal rotation profile of the Sun provides a crucial test for their relative importance. So does also the behavior of tidally locked binaries, which appear to destroy less lithium than single stars of the same mass. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
We have constructed a high-temperature super conductor-magnet momentum wheel for microsatellites and propose a micro high-temperature superconductor energy storage and attitude control system for nano/pico satellites. The momentum wheel for micro satellites has a mass of 1.1 kg with an angular momentum capacity of 3.5 J sec. It occupies a volume of 12.7 cm in diameter and 5 cm in height. It operates within the restricted power budget of a microsatellite with a total power supply of only 10 watts. It consumes less than 1 watt for sustenance. The micro high-temperature superconductor flywheel for nano/pico satellites has an angular momentum capacity of 0.083 Js and stores 2.32 kJ at 530 krpm. Its energy storage capacity is approximately 45 Wh/kg with an energy density of around 370 kJ/L. The HTS systems can perform the dual function of a power/attitude control system and are ideally suited for low Earth orbit energy storage, power generation, and attitude control of spacecraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号