首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 855 毫秒
1.
We explore the hydrodynamical evolution of dusty gas around active galactic nuclei (AGN) driven by the radiation from circumnuclear starbursts. For this purpose, we calculate the temporal equilibrium states between the radiation force by starburst regions and the gravity in galactic nuclei. As a result, we find that the equilibrium patterns between the radiation force and the gravity are roughly characterized by three types. The first is the situation where the starburst luminosity is larger than the Eddington luminosity. In this case, the dusty gas is blown out like a wind. We may detect intense infrared (IR) radiation from the starburst regions screened by blown-out dusty gas. The second is the situation when the radiation force is comparable to the gravity. In this case, the equilibrium surface surrounds the nuclear regions as well as starburst regions. Since the dusty gas absorbs UV or soft X-rays from the center and re-emits IR radiation, we may recognize it as a Seyfert 2 galaxy. The last is the situation where the starburst luminosity is small. In this case, the dusty wall of equilibrium would be built up only in the vicinity of starburst regions. The radiation from central regions is rarely obscured, because the dusty regions have only small angular extension. So, it would look like a Seyfert 1 galaxy which is characterized by intense soft X-rays. When we consider the stellar evolution in starburst regions, the starburst luminosity decreases with time. Therefore, we can recognize the above three types as time evolution; a starburst galaxy (first stage), a Seyfert 2 galaxy (second stage), and a Seyfert 1 galaxy (third stage). Note that we present here an alternative scenario for explaining the relation between Sy 1's and Sy 2's to the standard “Unified Scheme”.  相似文献   

2.
We have measured the strengths of Ca II triplet and Mgb stellar absorption lines in the nuclear and off-nuclear spectra of Seyfert galaxies. These features are diluted to varying degrees by continuum emission from the active nucleus and from young stars. Ca II triplet strengths can be enhanced if late-type supergiant stars dominate the near-IR light. Thus, objects with strong Ca II triplet and weak Mgb lines may be objects with strong bursts of star formation. We find that for most of our sample the line strengths are at least consistent with dilution of a normal galaxy spectrum by a power law continuum, in accord with the standard model for AGN. However, for several Seyferts in our sample, it appears that dilution by a power law continuum cannot simultaneously explain strong Ca II triplet and relatively weak Mgb. Also, these objects occupy the region of the IRAS color-color diagram characteristic of starburst galaxies. In these objects it appears that the optical to near-IR emission is dominated by late-type supergiants produced in a circumnuclear burst of star formation.  相似文献   

3.
The centers of elliptical galaxies host supermassive black holes that significantly affect the surrounding interstellar medium through feedback resulting from the accretion process. The evolution of this gas and of the nuclear emission during the galaxies’ lifetime has been studied recently with high-resolution hydrodynamical simulations. These included gas cooling and heating specific for an average AGN spectral energy distribution, a radiative efficiency declining at low mass accretion rates, and mechanical coupling between the hot gas and AGN winds. Here, we present a short summary of the observational properties resulting from the simulations, focussing on (1) the nuclear luminosity; (2) the global luminosity and temperature of the hot gas; (3) its temperature profile and X-ray brightness profile. These properties are compared with those of galaxies of the local universe, pointing out the successes of the adopted feedback and the needs for new input in the simulations.  相似文献   

4.
The evidence for a black hole located at the dynamical center of the Milky Way and identified with the unusual radio source, Sgr A1, is now very compelling. Proper motion and radial velocity surveys of stars clearly demonstrate the presence of a non-luminous concentration of 2.6 × 106 M within a volume of radius ∼0.01 pc centered on Sgr A1. At present, the accretion rate onto this object is rather small, leading to a total accretion luminosity at radio through far-IR wavelengths < 103 L. The accreted material apparently originates in the winds of nearby massive stars. However, neither the stellar nor the gaseous environments are static. The surrounding cluster of massive stars, most lying well within a parsec, is only a few million years old, and is destined to fade substantially within another 107 years. How did such a cluster form in the immediate and tidally stressed vicinity of a supermassive black hole? The circumnuclear disk of gas, which presently has an inner radius of 1 pc, seems destined to migrate inwards and eventually cause a much higher accretion rate onto Sgr A1, with a consequent flurry of new activity. Because the young stars and gas in the vicinity of the black hole interact with each other, the episodes of recurrent activity there can be described in terms of a limit cycle, which effectively controls the growth of the central black hole. In addition to describing the steps of this cycle, we identify several key observations which serve as potential clues to the past activity not only of our Galactic center, but to the activity of gas-rich nuclei in general.  相似文献   

5.
Imaging studies have shown that ∼ 25% of LINER galaxies display a compact nuclear UV source. I compare the HST ultraviolet (1150–3200 Å) spectra that are now available for seven such “UV-bright” LINERs. The spectra of NGC 404, NGC 4569, and NGC 5055 show clear absorption-line signatures of massive stars, indicating a stellar origin for the UV continuum. Similar features are probably present in NGC 6500. The same stellar signatures may be present but undetectable in NGC 4594, due to the low signal-to-noise ratio of the spectrum, and in M81 and NGC 4579, due to superposed strong, broad emission lines. The compact central UV continuum source that is observed in these galaxies is a nuclear star cluster rather than a low-luminosity active galactic nucleus (AGN), at least in some cases. At least four of the LINERs suffer from an ionizing photon deficit, in the sense that the ionizing photon flux inferred from the observed far-UV continuum is insufficient to drive the optical H I recombination lines. Examination of the nuclear X-ray flux of each galaxy shows a high X-ray UV ratio in the four “UV-photon starved” LINERs. In these four objects, a separate component, emitting predominantly in the extreme-UV, is the likely ionizing agent, and is perhaps unrelated to the observed nuclear UV emission. Future observations can determine whether the UV continuum in LINERs is always dominated by a starburst or, alternatively, that there are two types of UV-bright LINERs: starburst-dominated and AGN-dominated. Interestingly, recent results show that starbursts dominate the nuclear energetics in many Seyfert 2s as well.  相似文献   

6.
The distribution and the dynamics of the cold gas in the circumnuclear regions (r ≲ [1 − a few] kpc) of disk galaxies have been observed at high resolutions of a few arcsec in λ2.6 mm CO (J=1→0) line emission. Distinct CO features are commonly found in the observed disk galaxies and they are different from galaxy to galaxy. They are explained by means of orbit-resonance theories and dynamical evolution. The evolutionary sequence in time is constructed based on the studies of dynamics in theoretical works and numerical simulations in the literature. Not only the behavior of the cold gas but also the starburst, outbreaks of the active galactic nucleus, and the evolution of global structures in disk galaxies are discussed in the bar-driven evolution scenario.  相似文献   

7.
The connection between normal and active galaxies is reviewed, by summarizing our progress on answering nine key questions. (1) Do all galaxies contain massive dark objects (MDOs)? (2) Are these MDOs actually supermassive black holes? (3) Why are the dark objects so dark? (4) Do all galaxies contain an Active Galactic Nucleus (AGN)? (5) Are the “dwarf AGN” really AGN? (6) Does AGN activity correlate with host galaxy properties? (7) How are AGN fuelled? (8) Is AGN activity related to starburst activity? (9) How do quasars relate to galaxy formation?  相似文献   

8.
9.
Asymmetric, broad iron lines are a common feature in the X-ray spectra of both X-ray binaries (XRBs) and type-1 Active Galactic Nuclei (AGN). It was suggested that the distortion of the Fe Kα emission results from Doppler and relativistic effects affecting the radiative transfer close to the strong gravitational well of the central compact object: a stellar mass black hole (BH) or neutron star (NS) in the case of XRBs, or a super massive black hole (SMBH) in the case of AGN. However, alternative approaches based on reprocessing and transmission of radiation through surrounding media also attempt to explain the line broadening. So far, spectroscopic and timing analyzes have not yet convinced the whole community to discriminate between the two scenarios. Here we study to which extent X-ray polarimetric measurements of black hole X-ray binaries (BHXRBs) and type-1 AGN could help to identify the possible origin of the line distortion. To do so, we report on recent simulations obtained for the two BH flavors and show that the proposed scenarios are found to behave differently in polarization degree and polarization angle. A relativistic origin for the distortion is found to be more probable in the context of BHXRBs, supporting the idea that the same mechanism should lead the way also for AGN. We show that the discriminating polarization signal could have been detectable by several X-ray polarimetry missions proposed in the past.  相似文献   

10.
Recent multiwavelength monitoring of active galactic nuclei (AGN), particularly with the IUE satellite, has produced extraordinary advances in our understanding of the energy-generation mechanism(s) in the central engine and of the structure of the surrounding material. Examples discussed here include both ordinary AGN and blazars (the collective name for highly variable, radio-loud AGN like BL Lac objects and Optically Violently Variable quasars). In the last decade, efforts to obtain single-epoch multiwavelength spectra led to fundamentally new models for the structure of AGN, involving accretion disks for AGN and relativistic jets for blazars. Recent extensions of multiwavelength spectroscopy into the temporal domain have shown that while these general pictures may be correct, the details were probably wrong. Campaigns to monitor Seyfert 1 galaxies like NGC 4151, NGC 5548 and Fairall 9 at infrared, optical, ultraviolet and X-ray wavelengths indicate that broad-emission line regions are stratified by ionization, density, and velocity; argue against a standard thin accretion disk model; and suggest that X-rays represent primary rather than reprocessed radiation. For blazars, years of radio monitoring indicated emission from an inhomogeneous synchrotron-emitting plasma, which could also produce at least some of the shorter-wavelength emission. The recent month-long campaign to observe the BL Lac object PKS 2155-304 has revealed remarkably rapid variability that extends from the infrared through the X-ray with similar amplitude and little or no discernible lag. This lends strong support to relativistic jet models and rules out the proposed accretion disk model for the ultraviolet-X-ray continuum.  相似文献   

11.
A fundamental component of the Active Galactic Nuclei (AGN) paradigm is an accretion disk. However, the nature of this accretion disk is not well understood. In this paper I present the spectropolarimetric observations of active galactic nuclei (AGN) in the Lyman limit (912Å) region and discuss their implications in the context of accretion disks in AGN.  相似文献   

12.
A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r?0.1r?0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ? 2000 km s−1) and narrow line (1000 km s−1 ?FWHMHβ ? 2000 km s−1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.  相似文献   

13.
The possible association with the high-energy neutrino event IceCube-170922A has sparked interest in the blazar TXS 0506+056. We present 72 instantaneous 1–22 GHz spectra measured over the past 20 years with the RATAN-600 telescope and compare them with the results of observations of 700 variable Active Galactic Nuclei (AGN) studied within the same program. The recent radio flare of TXS 0506+056 started from a minimum in 2013 and reached its first peak in December 2017 and a second peak in May-June 2018. This was the third strong radio flare in this source since 1997. The spectrum remains nearly flat during the flares. The spectral shape and variability pattern observed in TXS 0506+056 are typical for variable AGN. RadioAstron Space VLBI observations in 2013–2015 did not detect TXS 0506+056 on space-ground baselines of more than 9 Earth diameters. However, an observation on 23 September 2015 resulted in the detection of interferometric signal on 6 Earth diameter baselines at 18 cm close to the detection limit. We consider the possibility that TXS 0506+056 and other AGN may accelerate relativistic protons more efficiently than electrons. Relativistic protons are necessary to produce both the high-energy neutrinos observed in the IceCube Observatory and the high AGN brightness temperatures implied by the RadioAstron detection. They may also provide the main contribution to the observed synchrotron radiation of parsec-scale AGN jets. This supports the suggestion that relativistic protons may play a much more important part in extragalactic astrophysics than earlier anticipated.  相似文献   

14.
We have obtained ISOPHOT-S low resolution mid-infrared spectra of a sample of 60 Ultraluminous Infrared Galaxies (ULIRGs). We use the strength of the ‘PAH’ mid-infrared features as a discriminator between starburst and AGN activity, and to probe for evolutionary effects. Observed ratios of PAH features in ULIRGs differ slightly from those in lower luminosity starbursts. We suggest that such PAH ratio changes relate to the conditions in the interstellar medium in these galaxies, and in particular to extinction.  相似文献   

15.
The possibility of explaining the continuous emission of active galactic nuclei in the frame of a model of spherical accretion onto a massive black hole is discussed. Cool inhomogeneities (T 104°K) within the accretion flow could be responsible for the broad line emission if half of the accreting matter is in the dense phase. A crucial test of this hypothesis is the expected correlation between the ratio of the luminosity in lines to the total luminosity and the hardness of the continuous spectrum.  相似文献   

16.
The Japanese X-ray astronomy satellite Hakucho and Tenma observed the activity of the rapid burster MXB 1730-335 in 1979 and 1983. In the first observation from 8 to 22 August 1979, the activity began with rapidly repetitive type II bursts which are similar to those observed earlier. Then the energy per burst quickly increased and evolved to exhibit a long flat top or roughly trapezoidal shape. In the last phase, burst size became smaller and the activity returned to the short type II burst mode. In the second observation from 5 to 31 August 1983, the burster started to emit a train of bursts which aparently resemble to type I bursts with quasi-periodical occurrence of 74 ~ 90 minutes. In the second phase, there appeared long type II bursts of trapezoidal profiles and exotic long bursts. In the last phase, about 3000 rapidly repetitive short type II bursts were observed. The bursts with shortest intervals exhibited almost periodic features of 16 sec.The type II bursts in both observation evolved to the size E of ~ 6 × 1040 erg that is one order larger than ever observed. They were long bursts (τ ≦ 600 s) of flat topped (trapezoidal) shape and those of exotic profiles. Those type II bursts exhibited some kinds of quasi-periodicities, which implies the vibrations or instabilities of the mass accretion onto the neutron stars. The type I bursts were often observed with/without type II bursts.  相似文献   

17.
Thick accretion disks with narrow funnels around massive black holes are considered promising models for active galactic nuclei. These models assume a supercritical accretion rate and emit collimated beams with super-Eddington luminosities. We have made approximate calculations of the interaction between the emerging radiation and the walls for an optically thin funnel. The results are sensitive to the sound velocity and to the viscosity parameter α. They suggest that a significant particle luminosity can accompany the radiation in the super-Eddington case. By applying an Eddington type limit based on mechanical equilibrium to a suitably chosen interior surface in the disk, we find that energy transport, if radiative, can strongly limit the efficiency of these models.  相似文献   

18.
Since it is not possible to predict when a Gamma-Ray Burst (GRB) will occur or when Active Galactic Nucleus (AGN) flaring activity starts, follow-up/monitoring ground telescopes must be located as uniformly as possible all over the world in order to collect data simultaneously with Fermi and Swift detections. However, there is a distinct gap in follow-up coverage of telescopes in the eastern U.S. region based on the operations of Swift. Motivated by this fact, we have constructed a 14″ fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are (1) to follow-up Swift/Fermi GRBs and (2) to perform the coordinated optical observations of Fermi Large Area Telescope (LAT) AGN. Our telescope system consists of off-the-shelf hardware. With the focal reducer, we are able to match the field of view of Swift narrow instruments (20′ × 20′). We started scientific observations in mid-November 2008 and GRT has been fully remotely operated since August 2009. The 3σ upper limit in a 30 s exposure in the R filter is ∼15.4 mag; however, we can reach to ∼18 mag in a 600 s exposures. Due to the weather condition at the telescope site, our observing efficiency is 30–40% on average.  相似文献   

19.
We investigated the physical properties of molecular gas in the nuclear region of M51 (Seyfert 2). We obtained an aperture synthesis 13CO(J = 1 − 0) image using the Nobeyama Millimeter Array (NMA), and compared it with NMA 12CO(J = 1 − 0) and HCN(J = 1 − 0) maps at similar spatial resolutions. Within a radius of 180 pc from the center, the 13CO(1 − 0) integrated intensity was found to be 3 times weaker than that of HCN(1 − 0). Large-Velocity-Gradient (LVG) calculations suggest that the observed high HCN(1 − 0)/13CO(1 − 0) intensity ratio would arise from dense (nH2 ∼ 105 cm−3) and hot (Tkin ≳ 300 K) molecular clouds in the nuclear molecular disk. We also observed in the 12CO(1 − 0), (3 − 2), 13CO(1 − 0), and (3 − 2) lines using the Nobeyama 45m and JCMT 15m telescopes. We detected weak 13CO lines as well as strong 12CO lines. The LVG calculations assuming a two-component model suggest that there is a large amount of low-density (nH2 ∼ 3 − 6 × 102 cm−3), low-temperature (Tkin ∼ 20 – 50 K) gas, and a small amount of high-density (nH2 ≳ 104 cm−3), high-temperature (Tkin ≳ 500 K) gas. The existence of the high-density and high-temperature component, although having a quite small beam filling factor, supports the aperture synthesis observation results mentioned above. Since this dense, hot gas is located in the nuclear molecular disk around the Active Galactic Nucleus (AGN), it may be heated by the strong X-ray radiation and/or by the shock induced by the radio jet.  相似文献   

20.
Nitric Oxide is a very important trace species which plays a significant role acting as a natural thermostat in Earth’s thermosphere during strong geomagnetic activity. In this paper, we present various aspects related to the variation in the NO Infrared radiative flux (IRF) exiting the thermosphere by utilizing the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/ Sounding of the Atmosphere using Broadband Emission Radiometry) observational data during the Halloween storm which occurred in late October 2003. The Halloween storm comprised of three intense-geomagnetic storms. The variability of NO infrared flux during these storm events and its connection to the strength of the geomagnetic storms were found to be different in contrast to similar super storms. The connection between the quantum of energy outflux from the upper atmosphere into space in terms of NO IRF and the duration of storms is established. The NO radiative cooling, and the closely correlated depletion in O/N2 ratio are controlled by the Joule heating intensity (proxied by AE-index). The collisional excitation rate of NO, calculated using the modelled datasets of WACCM-X (Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension), correlates well with the observed pattern of radiative emission by NO. Observational datasets from TIMED/GUVI (Global Ultra-Violet Imager) and MIT Haystack observatory madrigal GNSS (Global navigation satellite system) total electron content (TEC) database shows that the TEC and O/N2 enhancement in low-mid northern hemispheric latitudes are mainly controlled by the z-component of Interplanetary magnetic field (IMF-Bz). The penetration of eastward electric field during the storm events is found to be responsible for the overall enhancement of TEC. The contribution of enhanced day-side TEC in observed variation of O/N2 ratio by GUVI is also reported. It is also seen that during substorms related events the night-time polar region experiences more cooling due to NO than the daytime polar region. The connections between the mid- and low-latitude enhancement in NO IRF with the propagation of LSTIDs (Large-scale traveling ionospheric disturbances) in combination with the O/N2 variability, and the altitudinal variation in NO flux with the progression of the storm is also investigated. This study presents the evidence on the role of diffusion processes in the large scale enhancement of NO in the mesospheric altitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号