共查询到20条相似文献,搜索用时 62 毫秒
1.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(5-6):1001-1005
Ishizuki in this proceedings has discussed gas dynamics and related phenomena such as fueling the starburst and active galactic nuclei. This paper supplements the main paper by presenting observations for individual galaxies. 相似文献
2.
3.
V. Gaizauskas 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(11):11-30
The second Action Interval of the FBS coincided with an extended period of gradual evolution in a large complex of activity which served as the target for a coordinated space-ground study. The complex produced a multitude of subflares, half of which were clustered around just a few sites, each with a distinctive magnetic character. The essential flare-producing conditions at these preferred sites were preserved for many hours, even days, despite disruptions by flares and despite the eroding effects that accompany the disintegration of sunspot groups. Three preferred sites were active for the entire Interval, 22–27 May 1980. A comparison of flaring with non-flaring sites which also contained strong concentrations of flux demonstrates the importance of magnetic complexity, flux emergence, and motions at the photospheric level. The most energetic events by far, a chain of five closely homologous flares, erupted within 13 hours at a site where all these factors were conspicuously combined. The incessant activity preceding and during these flares of the fine chromospheric fibrils that covered and surrounded this particularly energetic site indicates reconfiguration of flux tubes in the chromosphere in a matter of minutes. These rapid (2–5 minutes), small (~10 arc-sec) changes are identified with emerging flux and with pores moving rapidly (≥200 m/s) very close to a magnetic neutral line. 相似文献
4.
G Strazzulla 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(7):1077-1084
Ion irradiation of carbon containing ices produces several effects among which the formation of complex molecules and even refractory organic materials whose spectral color and molecular complexity both depend on the amount of deposited energy. Here results from laboratory experiments are summarized. Their relevance for the formation and evolution of simple molecules and complex organic materials on planetary bodies in the external Solar System is outlined. 相似文献
5.
Kunio Kawamura Hitoshi TakeyaTakao Kushibe 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The role of condensation agents and minerals for oligopeptide formation was inspected to see whether minerals possess catalytic activity under mild and hydrothermal conditions. Under mild conditions, oligopeptide formation from negatively charged amino acids (Asp and Glu) using different minerals and the elongation of alanine oligopeptides ((Ala)2–(Ala)5) were attempted using apatite minerals. Oligo(Asp) up to 10 amino acid units from Asp were observed in the presence of 1-ethyl-3-(3-dimethylaminopropyl carbodiimide (EDC). Notable influence of minerals was not detected for the oligo(Asp) formation. Oligo(Asp) was gradually degraded by the further incubation in the presence of EDC in both the absence and presence of minerals. The formation of oligo(Glu) was less efficient in the presence of carbonyldiimidazole. The elongation from (Ala)3, (Ala)4, and (Ala)5 and the formation of diketopiperazine from (Ala)2 proceeded immediately in the presence of EDC in the meantime of the sample preparations. In addition, it was unexpected that the disappearance of the products and the reformation of the reactants occurred by the further incubation for 24 h; for instance, (Ala)5 decreased but (Ala)4 increased with increasing the reaction time in the reaction of (Ala)4 with EDC. These facts suggest that the activation of the reactant amino acids or peptides immediately occurs. Under the simulated hydrothermal conditions, EDC did not enhance the formation of oligopeptides from Asp, Glu or Ala nor the spontaneous formation of (Ala)5 from (Ala)4. 相似文献
6.
T. Azcárate B. Mendoza S. Sánchez de la Peña J.L. Martínez 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
We present a study of the temporal behavior of the systolic (SBP) and diastolic (DBP) blood pressure for a sample of 51 normotensive, healthy volunteers, 18 men and 33 women with an average age of 19 years old in Mexico City, Mexico, during April and May, 2008. We divided the data by sex along the circadian rhythm. Three geomagnetic storms occurred during the studied time-span. The strongest one, a moderate storm, is attributed to a coronal hole border that reached the Earth. The ANOVA test applied to the strongest storm showed that even though we are dealing with a moderate geomagnetic storm, there are statistically significant responses of the blood pressure. The superposed epoch analysis during a three-day window around the strongest storm shows that on average the largest changes occurred for the SBP. Moreover, the SBP largest increases occurred two days before and one day after this storm, and women are the most sensitive group as they present larger SBP and DBP average changes than men. Finally, given the small size of the sample, we cannot generalize our results. 相似文献
7.
H. Cottin P. Coll D. Coscia N. Fray Y.Y. Guan F. Macari F. Raulin C. Rivron F. Stalport C. Szopa D. Chaput M. Viso M. Bertrand A. Chabin L. Thirkell F. Westall A. Brack 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
To understand the evolution of organic molecules involved in extraterrestrial environments and with exobiological implications, many experimental programs in the laboratory are devoted to photochemical studies in the gaseous phase as well as in the solid state. The validity of such studies and their applications to extraterrestrial environments can be questioned as long as experiments conducted in space conditions, with the full solar spectrum, especially in the short wavelength domain, have not been implemented. The experiments that are described here will be carried out on a FOTON capsule, using the BIOPAN facility, and on the International Space Station, using the EXPOSE facility. Vented and sealed exposition cells will be used, which will allow us to study the chemical evolution in the gaseous phase as well as heterogeneous processes, such as the degradation of solid compounds and the release of gaseous fragments. 相似文献
8.
A.H. Maghrabi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Radiometric measurements of the thermal radiation originating from the moon’s surface were obtained using an infrared detector operating at wavelengths between 8 and 14 μm. The measurements cover a full moon cycle. The variation of the moon’s temperature with the lunar phase angle was established. The lunar temperatures were 391 ± 2.0 K for the full moon, 240 ± 3.5 K for the first quarter, and 236 ± 3 K for the last quarter. For the rest of the phase angles, the lunar temperature varied between 170 and 380 K. Our results are comparable with those obtained previously at these phase angles. For the new moon phase, the obtained temperature was between 120 and 133 K. With the exception of the new moon phase, our measurements at all the phase angles were consistent with those obtained using Earth-based data and those obtained by the Diviner experiment and the Clementine spacecraft. At the new phase, our measurements were comparable with those obtained from the ground but were significantly higher than those obtained by the Diviner and Clementine data. We attribute this inconsistency to either the calibration curve of our detector, which does not perform well at very low temperatures, or to infrared emission from the atmosphere. A simple linear model to predict the lunar temperature as a function of the phase angle was proposed. The experimental errors that affect the measured temperatures are discussed. 相似文献
9.
William L. Grose 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(4):19-28
The present paper discusses the use of the transformed Eulerian (or “residual”) mean-flow formulation, the Eliassen-Palm flux, and Ertel's potential vorticity to provide an increased understanding of wave, mean-flow interactions, and constituent transport processes in the stratosphere. Temperature and ozone data retrieved from radiance profiles obtained by the LIMS instrument on the Nimbus 7 satellite are utilized in conjunction with these theoretical concepts for the interpretation of phenomena that occurred during the major and minor warmings of January-February 1979. The results illustrate the insight provided by these concepts and demonstrate that useful diagnostic quantities can be derived from global satellite temperature fields. 相似文献
10.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(6-7):1271-1276
We observed daily sporadic-E activity in Japan using a series of ionosondes and discovered that the activity occurred in recurrent cycles, lasting approximately 2 to 16 days. We describe the cycles by referring to scaled data recorded in 15-minute segments during 1996. Planetary-wave activity in the lower thermosphere was observed during the same period with an MF radar located at Yamagawa (31.2° N, 130.6° E) in western Japan. We discuss the recurrent phenomenon in spring and summer 1996, sporadic-E exceeds 5 MHz in critical frequency, in relation to the periods of wind oscillations derived from MF-radar wind observations. From April to May 1996, there was a period of increased sporadic-E activity. The periods in which the occurrence rate of foEs exceeded 5 MHz in critical frequency decreased gradually from 7.4 to 5 days and correspond to long-period oscillations of meridional winds tracked by the MF radar at Yamagawa. In August 1996, we found the spectra of foEs observed at Yamagawa occurred in periods of 1.6, 2, 8, and 16 days. Our results strongly support the possibility that planetary waves play a significant role in generating long periods of oscillations in foEs. 相似文献
11.
C Rodier O Vandenabeele-Trambouze R Sternberg D Coscia P Coll C Szopa F Raulin C Vidal-Madjar M Cabane G Israel M F Grenier-Loustalot M Dobrijevic D Despois 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(2):195-199
If there is, or ever was, life in our solar system beyond the Earth, Mars is the most likely place to search for. Future space missions will have then to take into account the detection of prebiotic molecules or molecules of biological significance such as amino acids. Techniques of analysis used for returned samples have to be very sensitive and avoid any chemical or biological contamination whereas in situ techniques have to be automated, fast and low energy consuming. Several possible methods could be used for in situ amino acid analyses on Mars, but gas chromatography would likely be the most suitable. Returned samples could be analyzed by any method in routine laboratory use such as gas chromatography, already successfully performed for analyses of organic matter including amino acids from martian meteorites. The derivatization step, which volatilizes amino acids to perform both in situ and laboratory analysis by gas chromatography, is discussed here. 相似文献
12.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(5):812-828
The environment surrounding a planet is composed of plasma, ionized gases and a neutral atmosphere that are continuously under the influence of solar effects. The complex dynamical interactions among these media and the generated electric fields create complicated interrelated current systems in the magnetosphere, ionosphere and atmosphere of the planets. Electric fields, currents and the related magnetic disturbances constitute the planetary electrodynamics scenario that will be considered in this tutorial. Beside providing a comprehensive and integrated view of the planetary electrodynamics, this tutorial intends to introduce the necessary theoretical background to understand the physical processes involved and particularly, to discuss some topics in which the authors are currently focussing their interests: Sun–Earth electrodynamical coupling, numerical simulations, plasmaspheric electron content variability, atmospheric electrical discharges, and the effects of intense magnetic storms at the Earth’s surface and in the magnetic anomaly region. New results on these subjects are also presented. A deeper and broader comprehension of this complex scenario involving multidisciplinary investigations will certainly bring several implications in the observational, theoretical, computational and technological developments, with repercussions in biological and medical sciences. 相似文献
13.
H G Paretzke 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(10):15-20
Heavy charged particles interacting with biological cells can produce a wide variety of different physical, chemical and biological consequences. A rigorous identification of relevant chemical and biological alterations of biomolecules in cells, however, is still lacking and, thus, it is difficult to identify the potential biological importance of different early physical events. In addition, due to experimental and theoretical problems also little is known about the details of energy transfer, -absorption and -decay from projectiles to atoms/molecules in condensed targets; this is particularly true for not completely stripped heavy ions. Nevertheless, one might conclude from available data that higher densities of physical energy absorption events have a significantly higher probability to lead to qualitatively more severe biochemical alterations as regards the induction of DNA double strand breaks and of chromatin damage. It is not very likely that energy migration along the DNA molecule in biological cells over long distances plays a significant role as contributor to these biological radiation effects. 相似文献
14.
D L Bubenheim M Patterson K Wignarajah M Flynn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1845-1850
This study addressed the recycle of carbon from inedible biomass to CO2 for utilization in crop production. Earlier work identified incineration as an attractive approach to resource recovery from solid wastes because the products are well segregated. Given the effective separation of carbon into the gaseous product stream from the incinerator in the form of CO2 we captured the gaseous stream produced during incineration of wheat inedible biomass and utilized it as the CO2 source for crop production. Injection rate was based on maintenance of CO2 concentration in the growing environment. The crop grown in the closed system was lettuce. Carbon was primarily in the form of CO2 in the incinerator product gas with less than 8% of carbon compounds appearing as CO. Nitrogen oxides and organic compounds such as toluene, xylene, and benzene were present in the product gas at lower concentrations (< 4 micromol mol-1); sulfur containing compounds were below the detection limits. Direct utilization of the gaseous product of the incinerator as the CO2 source was toxic to lettuce grown in a closed chamber. Net photosynthetic rates of the crop was suppressed more than 50% and visual injury symptoms were visible within 3 days of the introduction of the incinerator gas. Even the removal of the incinerator gas alter two days of crop exposure and replacement with pure CO2 did not eliminate the toxic effects. Both organic and inorganic components of the incinerator gas are candidates for the toxin. 相似文献
15.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(4):597-604
The discrepancy between cosmic ray model predictions representing solar minimum conditions in the heliosphere and the 3–10 MeV post-1998 electrons observations by the Kiel Electron Telescope (KET) onboard Ulysses suggests the need for consistent changes in model parameters with increasing solar activity. In order to reduce this discrepancy, an effort is made to model the KET observations realistically during periods of increased solar activity by applying an advanced three-dimensional, steady-state electron modulation model based on Parker’s transport equation including the Jovian electron source. Some elements of the diffusion tensor which were not previously emphasized are revisited. A new relation is also established between the latitudinal dependence of the solar wind speed and the perpendicular polar diffusion. Based on this relation, a transition of an average solar wind speed from solar minimum to solar maximum conditions, as observed on board the Ulysses spacecraft, is modeled on the concept of the time-evolution of large polar coronal holes. These changes are correlated to different scenarios of the enhancement of perpendicular polar diffusion. Effects of these scenarios are illustrated, as a series of steady-state solutions, on the computed 7 MeV Jovian and galactic electrons in comparison with 3–10 MeV electrons observed from the period 1998 to the end of 2003. It is shown that this approach improves compatibility with the KET observations but it also points to the need for a time-dependent electron modulation model to fully describe modulation during moderate to extreme solar maximum conditions. 相似文献
16.
Hao Wang Ming Wei Guoping Li Shenghui Zhou Qingfeng Zeng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The rainfall process of Chengdu region in autumn has obvious regional features. Especially, the night-time rain rate of this region in this season is very high in China. Studying the spatial distribution and temporal variation of regional atmospheric precipitable water vapor (PWV) is important for our understanding of water vapor related processes, such as rainfall, evaporation, convective activity, among others in this area. Since GPS detection technology has the unique characteristics, such as all-weather, high accuracy, high spatial and temporal resolution as well as low cost, tracking and monitoring techniques on water vapor has achieved rapid developments in recent years. With GPS–PWV data at 30-min interval gathered from six GPS observational stations in Chengdu region in two autumns (September 2007–December 2007 and September 2008–December 2008), it is revealed that negative correlations exist between seasonally averaged value of GPS–PWV as well as its variation amplitude and local terrain altitude. The variation of PWV in the upper atmosphere of this region results from the water vapor variation from surface to 850 hPa. With the help of Fast Fourier Transform (FFT), it is found that the autumn PWV in Chengdu region has a multi-scale feature, which includes a seasonal cycle, 22.5 days period (quasi-tri-weekly oscillation). The variation of the GPS–PWV is related to periodical change in the transmitting of the water vapor caused by zonal and meridional wind strengths’ change and to the East Asian monsoon system. According to seasonal variation characteristics, we concluded that the middle October is the critical turning point in PWV content. On a shorter time scale, the relationship between autumn PWV and ground meteorological elements was obtained using the composite analysis approach. 相似文献
17.
18.
Jingrou Lin Danling Tang Werner Alpers Sufen Wang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
It is well known that tropical cyclones can cause upwelling, decrease of sea surface temperature, increase of chlorophyll-a (Chl-a) concentration and enhancement of primary production. But little is known about the response of dissolved oxygen (DO) concentration to a typhoon in the open ocean. This paper investigates the impact of a typhoon on DO concentration and related ecological parameters using in situ and remote sensing data. The in situ data were collected 1 week after the passage of the super-typhoon Nanmadol in the northern South China Sea in 2011. An increase in DO concentration, accompanied by a decrease in water temperature and an increase in salinity and Chl-a concentration, was measured at sampling stations close to the typhoon track. At these stations, maximum DO concentration was found at a depth of around 5 m and maximum Chl-a concentration at depths between 50 and 75 m. The layer of high DO concentration extends from the surface to a depth of 35 m and the concentrations stay almost constant down to this depth. Due to the passage of the typhoon, also a large sea level anomaly (21.6 cm) and a high value of Ekman pumping velocity (4.0 × 10−4 m s−1) are observed, indicating upwelling phenomenon. At the same time, also intrusion of Kuroshio waters in the form of a loop current into the South China Sea (SCS) was observed. We attribute the increase of DO concentration after the passage of the typhoon to three effects: (1) entrainment of oxygen from the air into the upper water layer and strong vertical mixing of the water body due to the typhoon winds, (2) upwelling of cold nutrient-rich water which stimulates photosynthesis of phytoplankton and thus the generation of oxygen, which also increases the DO concentration due to cold water since the solubility of oxygen increase with decreasing water temperature, and, possibly, (3) transport of DO enriched waters from the Western Pacific to the SCS via the intrusion of Kuroshio waters. 相似文献
19.
Yihua Zheng Anthony T.Y. Lui Mei-Ching Fok Brian J. Anderson Pontus C. Brandt Donald G. Mitchell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1234-1242
One essential component of magnetosphere and ionosphere coupling is the closure of the ring current through Region 2 field-aligned current (FAC). Using the Comprehensive Ring Current Model (CRCM), which includes magnetosphere and ionosphere coupling by solving the kinetic equation of ring current particles and the closure of the electric currents between the two regions, we have investigated the effects of high latitude potential, ionospheric conductivity, plasma sheet density and different magnetic field models on the development of Region 2 field-aligned currents, and the relationship between R2 FACs and the ring current. It is shown that an increase in high latitude potential, ionospheric conductivity or plasma sheet density generally results in an increase in Region 2 FACs’ intensity, but R2 FACs display different local time and latitudinal distributions for changes in each parameter due to the different mechanisms involved. Our simulation results show that the magnetic field configuration of the inner magnetosphere is also an important factor in the development of Region 2 field-aligned current. More numerical experiments and observational results are needed in further our understanding of the complex relationship of the two current systems. 相似文献
20.
E M Drobyshevski V A Chesnakov V V Sinitsyn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,16(2):73-84
Many moonlike bodies (M approximately or = 1 Moon) beyond the Martian orbit contain large amounts of dirty ice (approximately 50%) forming thick mantle with the solid phase thermal convection. When a body moves through the inter- or nearplanetary magnetized plasma, electric current is generated in the body and its environment. The current passing through a dirty ice containing up to 10% of organic admixtures produces a lot of electrochemical effects which have a profound impact on its composition. At this stage one can hardly say something definite concerning changes experienced by organics. The changes must occur inevitably and can be of a rather unexpected and far-reaching nature, so deserving a close study. Another obvious effect is a volumetric electrolysis of ice containing alien inclusions. The electrolysis products accumulate in ice in the form of a solid solution which is capable of detonation at 15-20 wt.% of 2H2 + O2. If M > or = 1 Moon (Galilean satellites, Titan), the body loses in explosion a part of its mass in the form of vapor and ice fragments (=short-period comet nuclei), whereas if M < or = 0.2 Moon, the body breaks up totally (the Main Belt asteroids origin approximately 3.9 Byr ago). 2H2 + O2 containing cometary nuclei are capable of burning or suffer new explosions when receiving an additional energy. The combustion in the sublimation products containing also light organics and 2H2 + O2 explains unexpected energetics and nearnuclear chemistry of Comet P/Halley (e.g. great abundances of negative and positive ions, atomic carbon, CO over CO2, origin of CHON particles etc) and its distant outbursts correlated, possibly, with the Solar activity. Thus the electrochemical processes in the dirty ice with organics, along with its subsequent thermal, radiative etc. processing, open up new potentials for explanation and prediction of quite unexpected discoveries. 相似文献