首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray observations indicate that the Galactic black hole Sgr A is inactive now, however, we suggest that Sgr A can become active when a captured star is tidally disrupted and matter is accreted into the black hole. Consequently the Galactic black hole could be a powerful source of relativistic protons with a characteristic energy ∼1052 erg per capture. The diffuse GeV and TeV γ-rays emitted in the direction of the Galactic Center (GC) are the direct consequences of p–p collisions of such relativistic protons ejected by very recent capture events occurred ?105 yr ago. On the other hand, the extended electron-positron annihilation line emission observed from GC is a phenomenon related to a large population of thermalized positrons, which are produced, cooled down and accumulated through hundreds of past capture events during a period of ∼107 yr. In addition to explaining GeV, TeV and 511 keV annihilation emissions we also estimate the photon flux of several MeV resulting from in-flight annihilation process.  相似文献   

2.
Glimpses of new results from Odin’s fourth to sixth years of operation are presented: the first detection of interstellar O2; the high water abundance in the M 42/Orion KL interface region; new results from the Orion KL spectral scan, including considerably improved knowledge of source physics and chemistry; the constant H2O/HCO+ abundance ratio observed in diffuse, spiral arm clouds; mapping of shock-enhanced water emission in some nearby bipolar outflows; meaningful upper limits to the water abundance in nearby starburst galaxies; new mapping of the water emissions and absorptions in the Galactic Centre region – Sgr A; abundant self-absorbing water observed in the circumstellar envelope of R Doradus; very successful observations of many comets – including Tempel 1 (the target of Deep Impact) and recent observations of an outburst in the disintegrating Comet 73P/Schwassmann–Wachmann 3; and finally a note on our Odin searches for primordial molecules – potential structure probes during the dark ages of the evolution of the Universe.  相似文献   

3.
A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r?0.1r?0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ? 2000 km s−1) and narrow line (1000 km s−1 ?FWHMHβ ? 2000 km s−1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.  相似文献   

4.
We explore the capabilities of the future space science mission IXO (International X-ray Observatory) for obtaining cosmological redshifts of distant Active Galactic Nuclei (AGNs) using the X-ray data only. We first find in which regions of the X-ray luminosity (LX) versus redshift (z) plane the weak but ubiquitous Fe Kα narrow emission line can deliver an accurate redshift (δz < 5%) as a function of exposure time, using a CCD-based Wide Field Imager (IXO/WFI) as the one baselined for IXO. Down to a 2–10 keV X-ray flux of 10−14 erg cm−2 s−1 IXO/WFI exposures of 100 ks, 300 ks and 1 Ms will deliver 20%, 40% and 60% of the redshifts. This means that in a typical 18′ × 18′ IXO/WFI field of view, 4, 10 and 25 redshifts will be obtained for free from the X-ray data alone, spanning a wide range up to z ∼ 2–3 and fairly sampling the real distribution. Measuring redshifts of fainter sources will indeed need spectroscopy at other wavebands.  相似文献   

5.
We investigated the physical properties of molecular gas in the nuclear region of M51 (Seyfert 2). We obtained an aperture synthesis 13CO(J = 1 − 0) image using the Nobeyama Millimeter Array (NMA), and compared it with NMA 12CO(J = 1 − 0) and HCN(J = 1 − 0) maps at similar spatial resolutions. Within a radius of 180 pc from the center, the 13CO(1 − 0) integrated intensity was found to be 3 times weaker than that of HCN(1 − 0). Large-Velocity-Gradient (LVG) calculations suggest that the observed high HCN(1 − 0)/13CO(1 − 0) intensity ratio would arise from dense (nH2 ∼ 105 cm−3) and hot (Tkin ≳ 300 K) molecular clouds in the nuclear molecular disk. We also observed in the 12CO(1 − 0), (3 − 2), 13CO(1 − 0), and (3 − 2) lines using the Nobeyama 45m and JCMT 15m telescopes. We detected weak 13CO lines as well as strong 12CO lines. The LVG calculations assuming a two-component model suggest that there is a large amount of low-density (nH2 ∼ 3 − 6 × 102 cm−3), low-temperature (Tkin ∼ 20 – 50 K) gas, and a small amount of high-density (nH2 ≳ 104 cm−3), high-temperature (Tkin ≳ 500 K) gas. The existence of the high-density and high-temperature component, although having a quite small beam filling factor, supports the aperture synthesis observation results mentioned above. Since this dense, hot gas is located in the nuclear molecular disk around the Active Galactic Nucleus (AGN), it may be heated by the strong X-ray radiation and/or by the shock induced by the radio jet.  相似文献   

6.
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV–3 TeV is presented. The angular resolution of the instrument, 1–2° at Eγ ∼ 100 MeV and ∼0.01° at Eγ > 100 GeV, its energy resolution ∼1% at Eγ > 100 GeV, and the proton rejection factor ∼106 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.  相似文献   

7.
Far-infrared observations of the Galactic Center have been carried through with the MPE Im balloon-borne telescope “Golden Dragon”. The measurements are composed of photometric scanning (33–95 μm) of the inner 4′×4′ and low resolution spectroscopy (δν = 10 cm?1) of the center and of a position approximately 1.5′ to the north. A Mars spectrum has been obtained for calibration. The spatial resolution of the photometry map is increased using the Maximum Entropy Method and the resulting map is compared to other observations in the same and other spectral regions. A clear asymmetry in the ring-like structure around the center indicates the presence of noncircular motions. The shape of the spectra is fairly smooth with at least no prominent dust features. A simple modelling shows a drastic increase of column density within 2 pc from the center and a modest drop over the next 3 pc to the north.  相似文献   

8.
We present the preliminary results of the recent Hα narrow-band imaging carried out for NGC 2770 with the Gran Telescopio Canarias (GTC) equipped with OSIRIS. We put the polarization measurements reported in Gorosabel et al. (2010) for SN 2007uy and SN 2008D in the context of the morphological information inferred from the Hα imaging. We estimated the orientation of the interstellar polarization (ISP) at the position of SN 2007uy and, most interestingly, at the site of SN 2008D which has been subject of an intensive debate due to its possible connection with Gamma-Ray Bursts (GRBs). The Hα imaging reveals a clumpy interstellar medium (ISM) composed of hundreds of compact emitting regions, for which we determined their sizes. The derived size for the Hα emitting region coincident with SN 2008D is consistent with the ISM cell size limits imposed by Gorosabel et al. (2010) based on millimetric data. A deeper data analysis is under way and will be published elsewhere. This article represents the first attempt to study the site of a possible GRB-like event combining millimetric, polarimetric and narrow-band data.  相似文献   

9.
10.
Preliminary results from the SMM γ-ray spectrometer indicate the detection of a constant source of 0.511 MeV annihilation radiation from the Galaxy. This source was observed in each of 5 years as the region of the Galactic center passed through the instrument's ∼120° field of view. Any year-to-year variability appears to be less than 30%. The measured intensity of the source is model dependent: for a point source at the center the average flux is (1.6 - 2.9) × 10−3 γ cm−2 s−1; for a distributed source following the Galactic CO emission the flux is (1.4 - 2.7) × 10−3 γ cm−2 s−1 rad−1 (uncertainty is due primarily to systematic errors). It is likely that the radiation comes from a diffuse source and is not associated with the reported compact source at the Galactic center. We have no new information to report on the distribution of 26Al γ-rays. Upper limits of 1.5 × 10−3 γ cm−2 s−1 are placed on Doppler-shifted lines from SS433.  相似文献   

11.
The question of whether there exists a large population of dust obscured QSOs is currently very controversial. In favour of this hypothesis are models for the origin of the X-ray Background (XRB) and also the Unified Model of AGN which both invoke large populations of obscured QSOs. For example, Madau et al. (1994) suggest a population of QSOs with NH ∼ 1024 cm−2 or AV = 1000m to improve the fit to the XRB between 1 < E < 100 keV. Arguments contradicting this theory include those of Boyle & di Matteo (1995) who claim that the tight X-ray/optical flux ratio relation for QSOs precludes the existence of a large population of objects obscured by significant amounts of intrinsic dust. Here, we follow Madau et al. (1994) and Comastri et al. (1995) to make fits to the XRB using obscured QSO populations and investigate whether selection effects may allow a tight distribution of X-ray/optical ratios to be maintained. We find that even for a flat distribution of absorbing columns, reasonable fits to the XRB can be obtained while both optical and X-ray absorption combine to produce the tight observed X-ray/optical correlation.  相似文献   

12.
We continue monitoring supernova remnant (SNR) 1987A with the Chandra X-ray Observatory. As of 2004 January, bright X-ray spots in the northwest and the southwest are now evident in addition to the bright eastern ring. The overall X-ray spectrum, since 2002 December, can be described by a planar shock with an electron temperature of ∼2.1 keV. The soft X-ray flux is now 8 × 10−13 ergs cm−2 s−1, which is about five times higher than four years ago. This flux increase rate is consistent with our prediction based on an exponential density distribution along the radius of the SNR between the HII region and the inner ring. We still have no direct evidence of a central point source, and place an upper limit of LX = 1.3 × 1034 ergs s−1 on the 3–10 keV band X-ray luminosity.  相似文献   

13.
We have observed the Cygnus Loop from the northeast (NE) to the southwest (SW) with XMM-Newton. We extracted spectra from 3′-spaced annular regions across the Loop and fitted them either with a one-kTe-component non-equilibrium ionization (NEI) model or with two-kTe-component NEI model. We found that the two-kTe-component model yields significantly better fits in almost all the spectra than the one-kTe-component model. Judging from the abundances, the high-kTe-component in the two-temperature model must be fossil ejecta while the low-kTe-component comes from the swept-up interstellar medium (ISM). The distributions of Ne, Mg, Si, and S for fossil ejecta appear to retain the onion-skin structure at the time of a supernova explosion, suggesting that significant overturning of the ejecta has not occurred yet. Comparing the relative abundances of fossil ejecta estimated for the entire Cygnus Loop with those from theoretical calculations for Type-II SN, the mass of the progenitor star is likely to be ∼13 M. The trends of the radial profiles of kTe and emission integral for the swept-up ISM are adequately described by the Sedov model, suggesting that the swept-up ISM is concentrated in a shell-like structure. Comparing our data with the Sedov model, we found the ambient medium density to be ∼0.7 cm−3. Then, we estimated the total mass of the swept-up ISM and the age of the remnant to be ∼130 M and 13,000 years, respectively. Note that if the explosion occurred within a stellar wind cavity, then the density in the cavity, the total swept-up mass in the cavity, and the age of the remnant are estimated to be ∼0.14 cm−3, ∼25 M, and ∼10,000 years, respectively.  相似文献   

14.
We observed the radio and X-ray source G359.23–0.82, also known as “the Mouse”, with XMM-Newton. The X-ray image of this object shows a point-like source at the Mouse’s “head”, accompanied by a “tail” that extends for about 40″ westward. The morphology is consistent with that observed recently with Chandra [Gaensler, B.M., van der Swaluw, E., Camilo, F., et al. The Mouse that soared: high resolution X-ray imaging of the pulsar-powered bow shock G359.23–0.82, ApJ 616, 383–402, 2004]. The spectrum of the head can be described by a power-law model with a photon index Γ  1.9. These results confirm that the Mouse is a bow-shock pulsar wind nebula (PWN) powered by PSR J1747–2958. We found that the hydrogen column density toward the Mouse, NH = (2.60 ± 0.09) × 1022 cm−2, is 20%–40% lower than those toward two serendipitously detected X-ray bursters, SLX 1744–299 and SLX 1744–300. At a plausible distance of 5 kpc, the X-ray luminosity of the Mouse, L(0.5–10 keV) = 3.7 × 1034 erg s−1, is 1.5% of the pulsar’s spin-down luminosity. We detected a Type I X-ray burst from SLX 1744–300 and found a possible decrease of NH and persistent luminosity for this source, in comparison with those observed with ROSAT in 1992.  相似文献   

15.
Maps are presented with 12′ resolution of the Galactic Center and adjacent galactic plane, from ?II = 359° to ?II = 5°. The data were obtained with the Steward Observatory cryogenically-cooled, balloon-borne telescope. The data are from channels filtered for a bandpass of 70 μm < γ < 110 μm and for a longpass of γ > 80 μm. For the typical effective temperature of 25 K of a galactic HII region at this spatial resolution, the effective wavelength of the channels are 93 μ and 145 μm. Continuous emission is mapped along the galactic plane in both wavelengths. There are two contrasts between the immediate vicinity of SgrA (?π < 1°) and the galactic plane in general. Firstly, for ?π > 1° the galactic plane narrows dramatically at 93 μm, while retaining its width at 145 μm. Secondly, the individual sources at ?π > 1° (which we associate with HII regions) have greater peak brightness in the 145 μm channel than the 93 μm channel, while SgrA hasapproximately equal peak brightness in each. The maps demonstrate the importance of submillimeter wavelengths to galactic surveys.  相似文献   

16.
Early in the HST mission the HRS Team will observe the Lyman alpha line at 100,000 spectral resolution toward 7 late-type local stars. The purpose is to derive the hydrogen and deuterium column densities and D/H ratios along lines of sight toward nearby stars. Here we present theoretical line profiles that demonstrate why 105 spectral resolution and high signal-to-noise are needed to derive accurate column densities from spectral lines that lie close to the flat part of the curve of growth and may contain multiple velocity components. The aim of the HRS program is to obtain column densities in the hydrogen and deuterium Lyman alpha lines along a variety of lines of sight within and extending beyond the local cloudlet in which the Sun is located near an edge. The broad chromospheric Lyman alpha emission lines of late-type stars are used as background sources against which to measure the interstellar absorption features. We will also obtain profiles of interstellar absorption features in Mg II and Fe II lines to derive the broadening parameter and/or identify possible multiple velocity components in the lines of sight.  相似文献   

17.
18.
X-ray observations show that at a time consistent with a coronal mass ejection onset there is a small, soft X-ray burst (precursor). Generally this is followed some 20–30m later by a more significant flare. At the onset time there is frequently simultaneous activity from widely separated points on the Sun (>105km). We present a model which accounts for the relationship between the coronal mass ejection and the precursor using 102–103 keV protons as the energy transfer agent. The protons (1) heat the high coronal loop. Inferred from the simultaneous activity, destabilizing the pressure balance to produce the ejection and (2) are guided by the magnetic field to below the transition region where they heat the chromospheric plasma to produce the precursor X-rays. High correlation between these events and a subsequent flare suggests that there may be a feedback mechanism operating from the coronal mass ejection.  相似文献   

19.
We present a high-resolution (24″) study of the HI interstellar gas distribution around the radio-quiet neutron star Geminga. Based on very large array and MPIfR Effelsberg telescope data, we analyzed a 40′ × 40′ field around Geminga. These observations have revealed the presence of a neutral gas shell, 0.4 pc in radius, with an associated HI mass of 0.8M, which surrounds Geminga at a radial velocity compatible with the kinematical distance of the neutron star. In addition, morphological agreement is observed between the internal face of the HI shell and the brightest structure of Geminga’s tail observed in X-rays. We explore the possibility that this morphological agreement is the result of a physical association.  相似文献   

20.
We have observed the CS (2-1) and (3-2), and 13CS (2-1) transitions toward the Galactic Center molecular cloud Sgr B2 which consists of several clumps with different chemical properties. We have newly identified a cloud at 30 km s-1 from a CS (2-1) optical depth map. This cloud lies 1.5' South from the Sgr B2 (M) position and has a diameter of approximately 2.5 pc and a total column density of 7 x 10(23) cm-2 assuming optically thin emission of the 13CS (2-1) line. Towards the 2'N Cloud no evidence for a density enhancement is found, which suggests that the strong emission from HNCO and HCO+2 is due to chemical effects. The main isotopic CS lines show broad wing components similar to previous studies, but we find rotational temperatures Trot(CS) < 10 K at this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号