首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Nobeyama Millimeter Array has been used to map CO(1-0) and HCN(1-0) emission in nearby Seyfert galaxies. A wide variety of molecular gas distributions are found, and there appears to be no “typical” gas distribution either in type-1 Seyferts or type-2s. All the gas distributions and kinematics in the observed Seyferts can be understood as a response to a non-axisymmetric potential in the central regions, suggesting that a small scale (a few 100 pc — a few kpc) distortion of the underlying potential is necessary for Seyfert activity, although it is not a sufficient condition. Circumnuclear star formation in the host of the observed Seyferts can occur via gravitational instabilities of the molecular gas, as in the case of star forming regions in non-Seyfert galaxies. Our results may support the idea that the host galaxies of Seyferts (both type-1s and 2s) and non-Seyferts are the same in terms of the fuel and trigger of star formation. Near the center of Seyfert nuclei (r < a few 100 pc), we find that the molecular gas tends to be gravitationally stable. We find that the RHCN/CO value ranges over an order of magnitude, from 0.086 to 0.6 among Seyfert galaxies. It seems that the presence of kpc scale jet/outflows is related to the extremely high RHCN/CO values.  相似文献   

2.
We explore the hydrodynamical evolution of dusty gas around active galactic nuclei (AGN) driven by the radiation from circumnuclear starbursts. For this purpose, we calculate the temporal equilibrium states between the radiation force by starburst regions and the gravity in galactic nuclei. As a result, we find that the equilibrium patterns between the radiation force and the gravity are roughly characterized by three types. The first is the situation where the starburst luminosity is larger than the Eddington luminosity. In this case, the dusty gas is blown out like a wind. We may detect intense infrared (IR) radiation from the starburst regions screened by blown-out dusty gas. The second is the situation when the radiation force is comparable to the gravity. In this case, the equilibrium surface surrounds the nuclear regions as well as starburst regions. Since the dusty gas absorbs UV or soft X-rays from the center and re-emits IR radiation, we may recognize it as a Seyfert 2 galaxy. The last is the situation where the starburst luminosity is small. In this case, the dusty wall of equilibrium would be built up only in the vicinity of starburst regions. The radiation from central regions is rarely obscured, because the dusty regions have only small angular extension. So, it would look like a Seyfert 1 galaxy which is characterized by intense soft X-rays. When we consider the stellar evolution in starburst regions, the starburst luminosity decreases with time. Therefore, we can recognize the above three types as time evolution; a starburst galaxy (first stage), a Seyfert 2 galaxy (second stage), and a Seyfert 1 galaxy (third stage). Note that we present here an alternative scenario for explaining the relation between Sy 1's and Sy 2's to the standard “Unified Scheme”.  相似文献   

3.
Seyfert galaxies contain small-scale radio jets that indicate the presence of compact active galactic nuclei of the same type found in more powerful quasars and radio galaxies. Since most Seyferts are relatively nearby, their nuclear environments can be probed at much higher resolution than in those more powerful sources. In addition, the relative weakness of the active nucleus makes the effects of the circumnuclear gas more important. VLBA images of a number of Seyfert galaxies have been produced, often at multiple frequencies, in order to reveal the presence and nature of the gas in the inner 1–100 parsecs of the galaxies. Absorption effects at gigahertz frequencies, due to both synchrotron self-absorption and free-free absorption, are quite common; the free-free absorption indicates the presence of large quantities of ionized gas in the inner few parsecs of the galaxies. Changes in radio position angles on parsec scales also occur in several galaxies, implying that Seyfert nuclei may have multiple symmetry axes.  相似文献   

4.
We have measured the strengths of Ca II triplet and Mgb stellar absorption lines in the nuclear and off-nuclear spectra of Seyfert galaxies. These features are diluted to varying degrees by continuum emission from the active nucleus and from young stars. Ca II triplet strengths can be enhanced if late-type supergiant stars dominate the near-IR light. Thus, objects with strong Ca II triplet and weak Mgb lines may be objects with strong bursts of star formation. We find that for most of our sample the line strengths are at least consistent with dilution of a normal galaxy spectrum by a power law continuum, in accord with the standard model for AGN. However, for several Seyferts in our sample, it appears that dilution by a power law continuum cannot simultaneously explain strong Ca II triplet and relatively weak Mgb. Also, these objects occupy the region of the IRAS color-color diagram characteristic of starburst galaxies. In these objects it appears that the optical to near-IR emission is dominated by late-type supergiants produced in a circumnuclear burst of star formation.  相似文献   

5.
6.
Imaging studies have shown that ∼ 25% of LINER galaxies display a compact nuclear UV source. I compare the HST ultraviolet (1150–3200 Å) spectra that are now available for seven such “UV-bright” LINERs. The spectra of NGC 404, NGC 4569, and NGC 5055 show clear absorption-line signatures of massive stars, indicating a stellar origin for the UV continuum. Similar features are probably present in NGC 6500. The same stellar signatures may be present but undetectable in NGC 4594, due to the low signal-to-noise ratio of the spectrum, and in M81 and NGC 4579, due to superposed strong, broad emission lines. The compact central UV continuum source that is observed in these galaxies is a nuclear star cluster rather than a low-luminosity active galactic nucleus (AGN), at least in some cases. At least four of the LINERs suffer from an ionizing photon deficit, in the sense that the ionizing photon flux inferred from the observed far-UV continuum is insufficient to drive the optical H I recombination lines. Examination of the nuclear X-ray flux of each galaxy shows a high X-ray UV ratio in the four “UV-photon starved” LINERs. In these four objects, a separate component, emitting predominantly in the extreme-UV, is the likely ionizing agent, and is perhaps unrelated to the observed nuclear UV emission. Future observations can determine whether the UV continuum in LINERs is always dominated by a starburst or, alternatively, that there are two types of UV-bright LINERs: starburst-dominated and AGN-dominated. Interestingly, recent results show that starbursts dominate the nuclear energetics in many Seyfert 2s as well.  相似文献   

7.
We have found compact, near-nuclear X-ray sources in 21 (54%) of a complete sample of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 – 2.4 keV) of these compact X-ray sources are ∼1037 – 1040 erg s−1. The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ∼390 pc. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Γ ≈ 2.5) spectral slope. A multicolor disk blackbody plus power-law model fits the data from the spiral galaxies well, suggesting that the X-ray objects in these galaxies may be similar to a black hole candidate (BHC) in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ≈ 0.7 keV) gas dominates the emission. The fact that the spectral slope of the spiral galaxy sources is steeper than in normal type 1 active galactic nuclei (AGNs) and that relatively low absorbing columns (NH ≈ 1021 cm−2) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral galaxies may be BHCs, low-luminosity AGNs, or possibly X-ray luminous supernovae. We estimate the black hole masses of the X-ray sources in the spiral galaxies (if they are BHCs or AGNs) to be ∼102–103 M. The X-ray sources in the elliptical galaxies may be BHCs, AGNs or young X-ray supernova also.  相似文献   

8.
With the aim of investigating galaxy evolution in nearby galaxy groups, we analyzed the spectral energy distribution of 24 galaxies, members of two groups in the Leo cloud, USGC U268 and USGC U376. We estimated the ages and stellar masses of the galaxies by fitting their total apparent magnitudes from far-ultraviolet to near-infrared with population synthesis models. The comparison of the results for a subsample of galaxies with smooth particle hydrodynamic (SPH) simulations with chemo-photometric implementation, shows that in most cases the estimated stellar masses obtained with the two different approaches are in good agreement. The kinematical and dynamical analysis indicates that USGC U268 is in a pre-virial collapse phase while USGC U376 is likely in a more evolved phase towards virialization.  相似文献   

9.
We observed twenty-eight Seyfert 2 galaxies with the Japanese X-ray satellite, Ginga, and found Seyfert 2 galaxies, in general, have the X-ray spectral characteristics of obscured Seyfert 1 nuclei. This result agrees with the predictions from Unified Seyfert model proposed by Antonucci and Miller /1/. However, among the observed Seyfert 2 galaxies, there are a few galaxies with no evidence of an obscuration, contrary to the general predictions of the unified model. We note that type 2 AGN will contribute to the Cosmic Diffuse X-ray Background, if the unified Seyfert model can be extended to the far distant AGN such as quasars.  相似文献   

10.
We investigated the efficiency of estimating characteristics of stellar populations (SP) and Active Galactic Nuclei (AGN) emission using ULySS code. To analyze simultaneously AGN and SP components in the integrated spectrum of Type 2 active galaxies, we modeled the featureless continuum (FC) and emission lines, and we used PEGASE.HR stellar population models provided by ULySS. In order to validate the method, we simulated over 7000 integrated spectra of Seyfert 2 galaxies. Spectra were generated using different characteristics of the featureless AGN continuum, signal-to-noise ratio (SNR), spectral ranges, properties of emission lines and single stellar population (SSP) model whose initial mass function (IMF) and abundance pattern is similar to the solar neighborhood. Simulated spectra were fitted with ULySS to evaluate the ability of the method to extract SP and AGN properties. We found that the analysis with ULySS can efficiently restore the characteristics of SP in spectra of Seyfert 2 AGNs, where signal-to-noise ratio is higher than 20, and where SP contributes with more than 10% to the total flux. Degeneracies between AGN and SP parameters increase with increasing the AGN continuum fraction, which points out the importance of simultaneous fitting of the FC and SP contributions.  相似文献   

11.
The evidence for a black hole located at the dynamical center of the Milky Way and identified with the unusual radio source, Sgr A1, is now very compelling. Proper motion and radial velocity surveys of stars clearly demonstrate the presence of a non-luminous concentration of 2.6 × 106 M within a volume of radius ∼0.01 pc centered on Sgr A1. At present, the accretion rate onto this object is rather small, leading to a total accretion luminosity at radio through far-IR wavelengths < 103 L. The accreted material apparently originates in the winds of nearby massive stars. However, neither the stellar nor the gaseous environments are static. The surrounding cluster of massive stars, most lying well within a parsec, is only a few million years old, and is destined to fade substantially within another 107 years. How did such a cluster form in the immediate and tidally stressed vicinity of a supermassive black hole? The circumnuclear disk of gas, which presently has an inner radius of 1 pc, seems destined to migrate inwards and eventually cause a much higher accretion rate onto Sgr A1, with a consequent flurry of new activity. Because the young stars and gas in the vicinity of the black hole interact with each other, the episodes of recurrent activity there can be described in terms of a limit cycle, which effectively controls the growth of the central black hole. In addition to describing the steps of this cycle, we identify several key observations which serve as potential clues to the past activity not only of our Galactic center, but to the activity of gas-rich nuclei in general.  相似文献   

12.
First results of pointed and All Sky Survey observations of galaxies with the X-ray observatory satellite ROSAT are reported. During observations of the Magellanic Clouds and the Andromeda galaxy new super-soft X-ray sources have been detected. This new class of luminous X-ray sources may help to solve the millisecond pulsar progenitor problem. Due to the improved sensitivity and longer observation times of ROSAT new X-ray point sources have been resolved in several nearby galaxies. The diffuse emission of the LMC that was already reported by EINSTEIN has been mapped in detail. It shows a lot of fine structure and temperatures around 5 × 106 K. The improved low energy response of ROSAT led to the discovery of 106 K gas from the spiral galaxy M101 and the halo of the starburst galaxy NGC 253. No diffuse emission was detected from the halo of the edge-on spiral galaxy NGC 5907.  相似文献   

13.
Using data from the Wide Field Camera EUV all-sky survey, we have established upper limits to the EUV flux from a sample of 30 bright, nearby, non-active spiral galaxies. These galaxies were chosen to be those most likely to be detected in the EUV on the basis of (i) low interstellar absorption within our own galaxy, (ii) brightness in other wavebands, (iii) high star formation activity, and (iv) proximity. The derived EUV upper limits are restrictive, and establish for the first time that the EUV flux escaping from galaxies does not constitute a major component of their bolometric luminosity, and in particular that it cannot be the sink for the energy injected into the interstellar medium by supernova explosions, as had been suggested following the failure to detect this power in the X-ray band.  相似文献   

14.
We present preliminary results from analyses of hard X-ray and optical observations of a soft X-ray selected sample. We created a small but complete sample with 20 of the softest and brightest objects with low Galactic absorption from the ROSAT bright soft X-ray selected radio-quiet AGN sample. This sample consists of 10 narrow-line Seyfert 1 galaxies and 10 broad-line Seyfert galaxies. We analyze ASCA data in the 0.6–10 keV band and optical spectra from ground-based telescopes. We investigate the photon indices in the hard X-ray band, soft excesses in the ASCA band, and optical emission line properties. The photon indices in the 2–10 keV band are nominal for both narrow-line Seyfert 1 galaxies and broad-line Seyfert 1 galaxies in each class compared with other heterogeneous samples. All of the narrow-line Seyfert 1 galaxies show soft excesses, but this component seems to be less significant for broad-line Seyfert 1 galaxies. There seems to be a trend of steeper X-ray spectra to be accompanied by narrower Hβ for narrow-line Seyfert 1 galaxies, but this is not extended to the larger velocity width regime of broad-line Seyfert 1 galaxies, and no clear trend is seen among them.  相似文献   

15.
We discuss the relevance of UV data in the detection and characterization of hot massive stars and young stellar populations in galaxies. We show results from recent extensive surveys in M31 and M33 with Hubble Space Telescope (HST) multi-wavelength data including UV filters, which imaged several regions at a linear resolution (projected) of less than half a pc in these galaxies, and from GALEX far-UV and near-UV wide-field, low-resolution imaging of the entire galaxies. Both datasets allow us to study the hierarchical structure of star formation: the youngest stellar groups are the most compact, and are often arranged within broader, sparser structures. The derived recent star-formation rates are rather similar for the two galaxies, when scaled for the respective areas. We show how uncertainties in metallicity and type of selective extinction for the internal reddening may affect the results, and how an appropriate complement of UV filters could reduce such uncertainties, and significantly alleviate some parameter degeneracies.  相似文献   

16.
The ultraviolet spectra, obtained with the International Ultraviolet Explorer, of a sample of H II regions and the nuclear regions of spiral and elliptical galaxies are described. The star formation rates in the nuclei of spiral galaxies are similar to the star formation rate in the solar neighbourhood. The data indicate that the current thinking on the synthesis of carbon and nitrogen in galaxies has to be revised and the K-corrections determined from the ultraviolet spectra of galaxies when compared with the photometry of distant galaxies suggests colour evolution of galaxies at z > 0.3.  相似文献   

17.
An extensive program to study nearby normal galaxies was carried out by various observers using the imaging instruments on the Einstein Observatory; more than 50 such galaxies were detected with 0.5 – 3.0 keV luminosities ranging from 2 × 1038 ergs s?1 to 3 × 1041ergs s?1. The X-ray luminosity of normal galaxies is ~2 × 10?4 of the optical luminosity and shows no strong correlation with morphological type. For the nearest galaxies, (the Large and Small Magellanic Clouds, M31 and M33,) studies, performed with the Observatory, were comparable to the Uhuru survey of the Galaxy. Approximately 30 new SNR were recognized in the Magellanic Clouds as a result. Over 90 sources were detected in M31 of which at least 20 are identified with globular cluster. The numbers of luminous (>1037 ergs s?1) sources detected in the nearest galaxies per unit mass are similar to that found in our own galaxy. Individual X-ray sources in the arms of nearby spirals can be very luminous; seven with luminosities in excess of 1039ergs s?1 have been discovered. The nuclei of some, but not all, normal galaxies are luminous X-ray sources; X-ray activity is not presently predictable from the radio or optical properties of the nucleus.  相似文献   

18.
Many nearby galaxies contain optical signatures of nuclear activity in the form of LINER nuclei. LINERs may be the weakest and most common manifestation of the quasar phenomenon. The physical origin of this class of objects, however, has been ambiguous. I draw upon a number of recent observations to argue that a significant fraction of LINERs are low-luminosity active galactic nuclei. The evidence in favor of this interpretation includes the similarity in the properties of the host galaxies of LINERs and Seyferts, the detection of broad-line regions, the detection of black holes in a handful of nearby galaxies that are spectroscopically recognized as LINERs, the presence of a compact nuclear source seen in the radio, ultraviolet, and X-rays, and the detection of nonthermal spectra in the hard X-ray band. The spectral energy distributions of LINERs differ dramatically from those of luminous AGNs, most notably in the absence of the “big blue bump.” This and other characteristics suggest that the central engine in LINERs is fed by a very low accretion rate.  相似文献   

19.
The connection between normal and active galaxies is reviewed, by summarizing our progress on answering nine key questions. (1) Do all galaxies contain massive dark objects (MDOs)? (2) Are these MDOs actually supermassive black holes? (3) Why are the dark objects so dark? (4) Do all galaxies contain an Active Galactic Nucleus (AGN)? (5) Are the “dwarf AGN” really AGN? (6) Does AGN activity correlate with host galaxy properties? (7) How are AGN fuelled? (8) Is AGN activity related to starburst activity? (9) How do quasars relate to galaxy formation?  相似文献   

20.
We are carrying out a program of 0.6″–0.8″ resolution 12CO J=2→1 observations with unprecedented high sensitivity in a sample of nearby AGN with the IRAM interferometer. Here we give some general results of the program and highlight results from the Seyfert 1 galaxy NGC 7469. This source shows tightly wound molecular spiral arms, a bar-like gas distribution running from the arms to the central regions, and a barely resolved, rapidly rotating central component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号