首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
At the beginning of the GEOS lifetime, some attempts have been made for taking advantage of the passes over Alaska. GEOS was then commanded in a fixed mode and the corresponding telemetry data were recorded at the NASA stations. For two passes over Jim Creek (48°2N–121°9W) where a powerful VLF transmitter (f 0 = 18.6 kHz) is located, GEOS was put in a specific mode in order to study the magnetospheric electromagnetic field in the vicinity of f 0. The results of one pass (June 11, from 0755 UT) are presented here.During this pass, a strong enhancement of all the e.m. components at f 0 has been observed for a specific period of time, when GEOS was very near to the exact conjugacy with NKL. The distance, as measured on the ground, over which the signal was above -6 dB from the maximum is of the order of 800 km. During the corresponding period of time (0740–0750 UT), the satellite altitude varied between 8000 and 6000 km. The magnetospheric region where the signal is strong appears to be structured, as if there were many ducts.Preliminary results concerning the polarization characteristics of the signal are presented. In the absence of precise measurements of these characteristics, the comparison between the electric and magnetic components of the received signal is not easy to interpret. An examination of the onboard computed correlograms (in the frequency range from f 0 -0.6 kHz to f 0 +3.3 kHz) shows that, for this pass, no VLF emissions were triggered by NKL, at the altitude of the satellite.  相似文献   

2.
Observations and theoretical works so far made are reviewed in regard to the interrelation of VLF and ULF emissions. Quasi-periodic VLF emissions are one of the typical examples showing the interrelation between the two phenomena. The term modulation may be more appropriate to explain these phenomena. Tentative interpretations will be given of the VLF and ULF emissions which are closely associated through a modulation of the electron distributions.  相似文献   

3.
We study the simultaneous occurrence of ULF waves observed on board GEOS and at two of its conjugated stations: Husafell (Iceland) and Skibotn (Norway). We try to deduce some properties of the regions in which these waves are generated. The few number of simultaneous observations of pearl events indicates that such structured oscillations can occur only in specific conditions which are not met generally at the geostationary altitude. We introduce a new method for measuring time delays between the satellite and the ground. We show that this time is much higher than it would be expected from a simple extrapolation of measurements done at lower latitudes on structured events.  相似文献   

4.
The Conference was called to bring together investigators of magnetospheric plasma waves having frequencies from VLF whistlers and emissions down through ELF and ULF to Pc5 long period pulsations. The emphasis was on the physics and techniques underlying the entire frequency range. Topics included wave electron interactions and electron precipitation, ray tracing and other methods to track down sources of VLF and ULF waves, VLF-ULF relationships, heavy ion effects in ULF propagation, and long period ULF waves.  相似文献   

5.
Recent works on magnetic signatures due to distant lightning discharges are reviewed. Emphasis is laid on magnetic signatures in the ULF range (in the old definition from less than 1 mHz up to 1 Hz), that is in the frequency range below the Schumann resonance. These signatures are known to be of importance for the excitation of the ionospheric Alfvén resonator (IAR) which works only at night time conditions. This emphasizes the difference between night and day time ULF signatures of lightning. The IAR forms a link between the atmosphere and magnetosphere. Similarities and differences of this link in the VLF (Trimpi effect) and ULF range are worked out. A search for a unique signature of sprite-associated positive cloud-to-ground (+CG) lightning discharges ended with a negative result. In this context, however, a new model of lightning-associated induced mesospheric currents was built. Depending on mesospheric condition it can produce magnetic signatures in the entire frequency range from VLF, ELF to ULF. In the latter case it can explain signatures known as the Ultra Slow Tail of +CG lightning discharges. A current problem on the magnetic background noise intensity has been solved by taking more seriously the contribution of +CG lightning discharges to the overall background noise. Their low occurrence rate is more than compensated by their large and long lasting continuing currents. By superposed epoch analysis it could be shown that the ULF response to ?CG is one to two orders smaller that in case of +CG with similar peak current values of the return stroke.  相似文献   

6.
The BOOMERANG (Balloon Observations Of Millimetric Extragalactic RAdiation aNd Geophysics) experiment is an international effort to measure the Cosmic Microwave Background (CMB) anisotropy on angular scales of 20 to 4°, with unprecedented sensitivity, sky and spectral coverage. The telescope will be flown from Antarctica by NASA-NSBF with a long duration stratospheric balloon (7–14 days), and is presently scheduled for flight in 1995–1996. The experiment is designed to produce an image of the Cosmic Microwave Background with high sensitivity and large sky coverage. These data will tightly constrain the baryon density, the reionization history, and the formation of large-scale structure in the universe. BOOMERANG will test technologies and return science data that are essential to the design of a future space-borne mission to map CMB anisotropy.  相似文献   

7.
This paper is concerned mainly with the information which can be extracted from frequency-time spectra in the VLF range. The instrument used is the correlator which has a good frequency resolution (50 Hz) and time resolution (30 ms) in one magnetic and one electric component simultaneously. By suitable computer analysis, it is possible for instance to distinguish between the two dominant electromagnetic emissions, hiss and chorus, as well as to display the complete spectra. This treatment is applied to the Survey periods, which are a fixed sequence of modes, repeated every hour on the hour in order to have reference data from GEOS analogous to many ground-based observatories. One result of this treatment obtained already is that hiss and chorus normally appear together, although one or the other may be dominating in intensity. The occurrence rate of these emissions in local time is also given.For continuous surveillance the filterbank data are used. There are 16 frequency filters supplying magnetic and electric amplitude at few different frequencies. Using these data, a storm sudden commencement can be followed with good time resolution (1 s), and an interesting correlation has been found in a few cases between the VLF signal amplitude and the cold plasma density (as measured by the active part of the S-300 experiment).  相似文献   

8.
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components.  相似文献   

9.
The radial pulsations of very luminous, low-mass models (L/M 104, solar units), which are possible representatives of the R CrB stars, have been examined. These pulsations are extremely nonadiabatic. We find that there are in some cases at least one extra (strange) mode which makes interpretation difficult. The blue instability edges are also peculiar, in that there is an abrupt excursion of the blue edge to the blue for L/M sufficiently large. The range of periods of the model encompasses observed periods of the Cepheid-like pulsations of actual R CrB stars.  相似文献   

10.
Three 2.104 s observations were carried out with EXOSAT on three fields following the shock from the north to the east of the Cygnus Loop supernova remnant. Due to the softness of the source, most of the photons were collected with the LE package (CMA). For each exposure we used at least three filters (4000 Å lexan, Al-Par, boron) in order to extract the maximum spectral information from the data. The few photons gathered with the boron filter are particularly important in that respect. The total count number collected with the other filters allows a statistically significant overall mapping of the fields with 1*1 pixels, but a better resolution can be achieved on the brightest areas of the Loop. Interesting details are revealed, such as bright small spots. Irregularities are also evident both in the shock front and inside the remnant, specially in the northern and eastern fields.  相似文献   

11.
《Space Science Reviews》1989,49(1-2):125-138
The Gamma-1 telescope has been developed through a collaboration of scientists in the USSR and France in order to conduct -ray astronomical observations within the energy range from 50 to 5000 MeV. The major characteristics of the telescope were established by Monte-Carlo simulations and calibrations made with the aid of electron and tagged -ray beams produced by an accelerator, and these have been found to be as follows: the effective area for photons coming along the instrument's axis varies from about 50 cm2 at E = 50 MeV to approximately 230 cm2 at E 300 MeV; the angular resolution (half opening of the cone embracing 68% events) is equal to 2.7° at E = 100 MeV, and 1.8° at E = 300 MeV; the energy resolution (FWHM) varies from 70% to 35% as the energy of the detected photons increases from 100 to 550 MeV; the telescope's field-of-view at the half-sensitivity level is 300–450 square degrees depending upon the spectrum of the detected radiation, and the event selection logic. Proceeding from the thus obtained characteristics it is demonstrated that a point source producing a photon flux J (E 100 MeV) = 3 × 10-7 cm-2 s-1, can be detected with a 5 significance by observing it during 106 s at the level of the Cygnus background, and a source having intensity J (E 100 MeV) = 10-6 cm-2 s-1 can be detected to within a mean square positional accuracy of about 15.  相似文献   

12.
介绍了一种用于飞机武器发射时测量发动机进口动态温升时序的机载小惯量探针,以其独特的研制方法,较好地解决了机载小惯量测温装置、频响与可靠性兼顾这一测试难题,并在武器发射时,成功地用来评价发动机工作稳定性的影响。  相似文献   

13.
Morningside aurorae at latitudes below about 70° display complex spatial and temporal structures unlike anything seen in the evening or midnight sectors. The morningside structures are believed to be formed by the precipitation of trapped electrons injected in auroral substorms; no significant role has yet been identified in the morningside auroral regions for the large-scale parallel electric fields that dominate the evening side. How those spatial and temporal structures originate has been the subject of much speculation; most theoretical mechanisms focus on the wave-particle interactions that drive pitch-angle diffusion. The principal evidence pertaining to the role of pitch-angle diffusion in the auroral regions is reviewed here. The observational evidence concerns mainly auroral emissions in the atmosphere, energetic particles observed from rockets and satellites, VLF waves at high altitudes, magnetospheric cold plasma, and magnetic pulsations detected on the ground. With the aid of such evidence, plus observations and theories related to the outer permanently trapped radiation belts, several theoretical models for the modulation of VLF wave growth in the equatorial regions have been pieced together. Those models, and the observational data supporting them, are examined to see how well they fit the observational picture and to see where they might lead in future research. The models fall into two categories: those in which the modulations are externally imposed and those in which the modulations are self-excited. For the temporal variations the self-excited mechanisms are now favored. The leading candidate involves a nonlinear relaxation oscillator; the nonlinearity may have important consequences. There are several contenders in both categories for the origin of the spatial structures, none of which agrees fully with inferences from the observations. All the theories involve critical parameters that have not yet been precisely fixed. The critical research needs are listed and discussed.  相似文献   

14.
Results of the observations of Geminga (2CG 195 + 4) in the energy range E 1012 eV, carried out in 1979, 1981, and 1983 with the Tien Shan high-altitude facility for recording the erenkov flashes of extensive air showers are reported. The mean flux density averaged over the whole protracted data is (5.7 ± 2.5) × 10–11 quanta cm–1 s–1. The flux is variable with a period 59 s. The character of the period variation with time is hard to be reconciled with earlier findings by other authors. The importance of further simultaneous observations at various energies is indicated.  相似文献   

15.
Harvey  P.R.  Curtis  D.W.  Heetderks  H.D.  Pankow  D.  Rauch-Leiba  J.M.  Wittenbrock  S.K.  McFadden  J.P. 《Space Science Reviews》2001,98(1-2):113-149
The Fast Auroral Snapshot Explorer (FAST) is the second of the Small Explorer Missions which are designed to provide low cost space flight opportunities to the scientific community. FAST performs high time resolution measurements of the auroral zone in order to resolve the microphysics of the auroral acceleration region. Its primary science objectives necessitate high data volume, real-time command capability, and control of science data collection on suborbital time scales. The large number of instruments requires a sophisticated Instrument Data Processing Unit (IDPU) to organize the data into the 1 Gbit solid state memory. The large data volume produced by the instruments requires a flexible memory capable of both high data rate snapshots (12 Mbit s–1) and coarser survey data collection (0.5 Mbit s–1) to place the high rate data in context. In order to optimize the science, onboard triggering algorithms select the snapshots based upon data quality. This paper presents a detailed discussion of the hardware and software design of the FAST IDPU, describing the innovative design that has been essential to the FAST mission's success.  相似文献   

16.
The Transient Gamma-Ray Spectrometer (TGRS) to be flown aboard the WIND spacecraft is primarily designed to perform high resolution spectroscopy of transient -ray events, such as cosmic -ray bursts and solar flares over the energy range 25 keV to 8.2 MeV with an expected spectroscopic resolution of 3 keV at 1 MeV. The detector itself consists of a 215 cm3 high purityn-type Ge crystal kept at cryogenic temperatures by a passive radiative cooler. The geometric field of view defined by the cooler is 1.8 steradian. To avoid continuous triggers by soft solar events, a thin BeCu Sun-shield around the sides of the cooler has been provided. A passive Mo/Pb occulter, which modulates signals from within ±5° of the ecliptic plane at the spacecraft spin frequency, is used to identify and study solar flares, as well as emission from the galactic plane and center. Thus, in addition to transient event measurements, the instrument will allow the search for possible diffuse background lines and monitor the 511 keV positron annihilation radiation from the galactic center. In order to handle the typically large burst count rates, which can be in excess of 100 kHz, burst data are stored directly in an onboard 2.75 Mbit burst memory with an absolute timing accuracy of ±1.5 ms after ground processing. The memory is capable of storing the entire spectral data set of all but the largest bursts. WIND is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on November 1, 1994. After injection into a phasing orbit, the spacecraft will execute a double lunar swing-by before being moved into a controlled halo orbit about theL1 Lagrangian point (250R e towards the Sun). This will provide a 5 light-second light travel time with which to triangulate gamma-ray burst sources with Earth-orbiting systems, such as those on-board the Gamma-Ray Observatory (GRO). The response of instrument to transient -ray events such as GRB's and solar flares will be presented as well as the expected response to steady state point sources and galactic center line emission.  相似文献   

17.
Our knowledge of the interplanetary medium is outlined and its frictionless interaction with the geomagnetic cavity, first discussed by Chapman and Ferraro, is described. An important feature of this interaction is the interplanetary field which is compressed and may possibly lead to the formation of a shock wave.The possibility of frictional interaction between the solar wind and the cavity is discussed; an effect which appears to cause friction is the instability of interpenetrating ion-electron streams. This effect will also cause strong heating and trapping of ions and the generation of electromagnetic waves.The theory of propagation of geomagnetic disturbances in the magnetosphere and ionosphere is reviewed, first in general terms and than for some of the various components of a geomagnetic storm.Sea-level disturbances are divided into stormtime (Dst) and other (DS) components and also into different phases and the experimental data is reviewed. Theories of Dst, including the ringcurrent theory and magnetic tail theory are discussed and compared. Attempts to explain the complex DS field comprise the magnetospheric dynamo theory and the asymmetrical ring-current theory; these are compared in the light of experimental evidence.Motions of plasma and field lines in the magnetosphere are discussed in general terms: there are motions which deform the field and there are interchange motions. The former are opposed by Earth currents; the latter are not. The two types of motion are coupled through ionospheric Hall conductivity. Theories of the DS field in terms of the two types of motion are described; in particular motions caused by frictional interaction with the solar wind are discussed. These motions cause a helical twist in the field lines which propagates into the polar ionosphere as a hydromagnetic wave. In the ionosphere the motions of the field lines drive currents (moving-field dynamo) which cause the DS field.Drifts of neutral ionization in the lower ionosphere lead to localized accumulations which play a vital part in storm and auroral theory: they cause polarization fields which change the DS current system; they react on the magnetospheric motions to cause particle acceleration and precipitation.Auroral morphology and theories are briefly reviewed; the solar wind friction theory, although far from complete may provide a start. Further development should take the form of determining ionospheric drifts, polarization electric fields and consequent magnetospheric effects.A brief discussion is given of some associated effects: growth and decay of belts of geomagnetically trapped corpuscules; increase in ionospheric absorption of radio waves and lower-level X-ray production, ionospheric storm and high-latitude irregularities, micropulsations, VLF and ELF radio emissions from the magnetosphere, atmospheric heating and wave generation.  相似文献   

18.
The electric field associated with geomagnetic disturbances gives rise to potential differences at the Earth's surface. Thus, currents are induced in power transmission lines which are earthed at both ends through transformers. The currents vary so slowly with time that they can be considered direct currents. The phenomenon has been studied in Finland for some years, and in connection with this research induced currents have been measured at four places by recording the current from the transformer neutral into the Earth. These measurements are considered in this paper. In addition, theoretical calculation of the potential differences and of the currents is discussed.Paper presented at the Fifth International Wrocaw Symposium on Electromagnetic Compatibility, Wrocaw (Poland), 17–19 September, 1980.  相似文献   

19.
We describe the Far IR Explorer, a MIDEX-class orbital mission designed to survey the entire sky at millimeter and sub-millimeter wavelengths. The primary science goal of FIRE is to map the Cosmic Microwave Background with 20 resolution and 1 ppm precision. In addition, FIRE will measure diffuse radio and infrared emission from the Galaxy with unprecedented sensitivity, and will uniformly survey the entire sky to a limiting flux density of <100 mJy (3 ).  相似文献   

20.
A number of plasma, particle and field detectors used on rocket investigations in and above the Earth's atmosphere are described. Emphasis is on magnetospheric and solar-interplanetary studies. A balloon-borne X-ray telescope system with 20 pointing accuracy is discussed. A PCM telemetry system used on both balloons and rockets to handle scientific data is described including a simple Doppler ranging system that gives location to 1.5 km. A system to reduce and analyze PCM data on the ground is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号