首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Application of digital cross-correlation spectroscopy to the spectra of the W Serpentis binaries SX Cas and RX Cas has allowed an accurate determination of the orbits and rotations of the (mass-losing) K-subgiant secondary components. The distortion of the primary radial-velocity curves due to the influence of the prominent accretion disks in these systems has been modelled to first order. This enables us to estimate k 1, and thereby the mass ratio q 0.30, to within ± 20%. The absolute radii of the secondaries are derived independently from the observed rotations and periods, assuming synchronous rotation. They show that the stars fill their Roche lobes, or at least very nearly so. Rough fits to the available photometry shows both primaries to be unevolved mid-B stars; that in RX Cas appears completely obscured by the disk. Preliminary spectroscopic data for W Ser and W Cru show some promise for similar analyses of these systems.  相似文献   

2.
Initial results are presented from a study of H γ profiles in the two interacting binaries KX And and RX Cas of W Serpentis type. The used CCD spectra with a resolution of 0.13Å/px were obtained with the 2.2m telescope and the Coudé spectrograph at the German-Spanish Astronomical Center at Calar Alto/Spain. KX And. This star is probably a non-eclipsing member of the W Serpentis type interactive binaries and has a period of P = 38.908 days. Our seven spectra of KX And were obtained at phase 0.54 – 0.75. The P Cyg profiles of the H γ line during our observations indicate an expanding shell. The asymetry becomes blue-sided at phase 0.67 and increases thereafter. This points toward a strong outflow of matter in the vicinity of the L3 point. RX Cas. According to the model of Andersen et al. (1988) the primary is a mid-B type star with M = 5.8M and R = 2.5R . The star is completely obscured by a geometrically and optically thick disk, which is supplied by mass transfer from the other component. The secondary is a K1 giant with M = 1.8M and R = 23.5R and fills out his critical Roche lobe. Radiative and geometrical properties of the disk are variable and its structure is probably not homogenous. Five spectra of RX Cas were obtained during the primary eclipse (phase 0.95 – 0.19). The observed double-peak emission is seen only after the eclipse with a separation of ≈ 250 km/s peak-to-peak, while during the eclipse an asymetric line profile can be observed with a red-shifted emission always presented. Also, a central emission at φ = 0.94 should be noticed, probably originating in the vicinity of L1. The observations of both systems indicate that we are dealing with strongly interacting binaries. Further observations are planned for better covering of phase.  相似文献   

3.
We have analyzed UV photospheric lines of seven O-type binaries, by means of crosscorrelation and Doppler tomographic methods, with the goal of estimating the physical properties of the individual stars. These systems are HD 1337 (AO Cas), HD 47129 (Plaskett's star), HD 57060 (29 UW CMa), HD 37043 (Iota Ori), HD 215835 (DH Cep), HD 152218, and HD 152248. Mass ratios have been obtained primarily from a cross-correlation technique, but also by several other techniques. The tomographic techniques allow us to separate the spectra of the components. We then can estimate the individual spectral types and luminosity classes of the stars (and henceT eff and logg, respectively), the luminosity ratio, and projected rotational velocities. We discuss the physical properties of these O-type binaries. These are some of the early results of a large scale project involving 36 O-type double-lined binary systems (from the catalog of Battenet al. 1989) which we will study using IUE and complementary ground-based data.  相似文献   

4.
Initial results are presented from a study of H profiles in the two interacting binaries KX And and RX Cas of W Serpentis type. The used CCD spectra with a resolution of 0.13Å/px were obtained with the 2.2m telescope and the Coudé spectrograph at the German-Spanish Astronomical Center at Calar Alto/Spain.KX And. This star is probably a non-eclipsing member of the W Serpentis type interactive binaries and has a period of P = 38.908 days. Our seven spectra of KX And were obtained at phase 0.54 – 0.75. The P Cyg profiles of the H line during our observations indicate an expanding shell. The asymetry becomes blue-sided at phase 0.67 and increases thereafter. This points toward a strong outflow of matter in the vicinity of the L3 point.RX Cas. According to the model of Andersen et al. (1988) the primary is a mid-B type star with M = 5.8M and R = 2.5R . The star is completely obscured by a geometrically and optically thick disk, which is supplied by mass transfer from the other component. The secondary is a K1 giant with M = 1.8M and R = 23.5R and fills out his critical Roche lobe. Radiative and geometrical properties of the disk are variable and its structure is probably not homogenous.Five spectra of RX Cas were obtained during the primary eclipse (phase 0.95 – 0.19). The observed double-peak emission is seen only after the eclipse with a separation of 250 km/s peak-to-peak, while during the eclipse an asymetric line profile can be observed with a red-shifted emission always presented. Also, a central emission at = 0.94 should be noticed, probably originating in the vicinity of L1.The observations of both systems indicate that we are dealing with strongly interacting binaries. Further observations are planned for better covering of phase.Visiting Astronomer, German-Spanish Astronomical Center, Calar Alto, operated by the Max-Planck-Institut für Astronomie Heidelberg jointly with the Spanish National Commision for Astronomy.  相似文献   

5.
6.
7.
In this work we examine the damping of Alfvén waves as a source of plasma heating in disks and magnetic funnels of young solar like stars, the T Tauri stars. We apply four different damping mechanisms in this study: viscous-resistive, collisional, nonlinear and turbulent, exploring a wide range of wave frequencies, from 10−5Ωi to 10−1Ωi (where Ωi is the ion-cyclotron frequency). The results show that Alfvénic heating can increase the ionization rate of accretion disks and elevate the temperature of magnetic funnels of T Tauri stars opening possibilities to explain some observational features of these objects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Let us suppose that it is possible observationally to determine the number ratio of WR to O stars in a starburst galaxy (cf. e. g. Vacca &; Conti 1992) and that one can also have some information on the way the different WR subtypes are distributed (number ratios as WN/WR, WNL/WR etc ...), the question is, what can we deduce from these values on the burst of star formation which gave birth to these WR stars? Is it possible for instance to constrain the age of the burst (i.e. the time elapsed since the beginning of the burst of star formation), its intensity (i.e. the ratio of the star formation rate during the burst to that before the burst) or the metallicity of the cloud from which the stars formed? We present here models of starbursts based on the most recent models for single stars computed by the Geneva group and show that the study of the WR population in a starburst provides very useful insights on the age of the burst and on the metallicity of the star forming zone.  相似文献   

9.
The Solar System includes two planets—Mercury and Mars—significantly less massive than Earth, and all evidence indicates that planets of similar size orbit many stars. In fact, one of the first exoplanets to be discovered is a lunar-mass planet around a millisecond pulsar. Novel classes of exoplanets have inspired new ideas about planet formation and evolution, and these “sub-Earths” should be no exception: they include planets with masses between Mars and Venus for which there are no Solar System analogs. Advances in astronomical instrumentation and recent space missions have opened the sub-Earth frontier for exploration: the Kepler mission has discovered dozens of confirmed or candidate sub-Earths transiting their host stars. It can detect Mars-size planets around its smallest stellar targets, as well as exomoons of comparable size. Although the application of the Doppler method is currently limited by instrument stability, future spectrographs may detect equivalent planets orbiting close to nearby bright stars. Future space-based microlensing missions should be able to probe the sub-Earth population on much wider orbits. A census of sub-Earths will complete the reconnaissance of the exoplanet mass spectrum and test predictions of planet formation models, including whether low-mass M dwarf stars preferentially host the smallest planets. The properties of sub-Earths may reflect their low gravity, diverse origins, and environment, but they will be elusive: Observations of eclipsing systems by the James Webb Space Telescope may give us our first clues to the properties of these small worlds.  相似文献   

10.
We present a general overview of the structure and evolution of massive stars of masses ≥12 M during their pre-supernova stages. We think it is worth reviewing this topic owing to the crucial role of massive stars in astrophysics, especially in the evolution of galaxies and the universe. We have performed several test computations with the aim to analyze and discuss many physical uncertainties still encountered in massive-star evolution. In particular, we explore the effects of mass loss, convection, rotation, 12C(α,γ)16O reaction and initial metallicity. We also compare and analyze the similarities and differences among various works and ours. Finally, we present useful comments on the nucleosynthesis from massive stars concerning the s-process and the yields for 26Al and 60Fe.  相似文献   

11.
Taking as example a 60M star of solar metallicity, the state of the art of model calculations for very massive, from the main sequence to the supernova stage, is reviewed. It is argued that — due to the simple internal structure of Wolf-Rayet stars — the post main sequence evolutionary phases are currently those which are better understood. A brief discussion of the supernova outcome from very massive stars is given. Then, the more uncertain main sequence evolution is discussed. A first attempt to incorporate results about pulsational instabilities of very massive stars in stellar evolutionary calculations is performed. On its basis, a new type of evolutionary sequence for very massive stars is obtained, namely O-star → Of-star → H-rich WNL → LBV → H-poor WNL → WNE → WC → SN. This scenario is shown to correspond better to many observed properties of very massive stars than the standard one. It includes a model for the prototype LBV P Cygni.  相似文献   

12.
One-dimensional hydrodynamic calculations have been done of 1E51 erg explosions in 15M stars. We have appended a steep external density gradient to the pre-supernova model of Weaver et al and find: (1) the outer shock wave decelerates throughout the pre-Sedov phase, (2) the expanding stellar envelope and the shocked interstellar material are Rayleigh-Taylor stable until the Sedov phase, and (3) steep internal density gradients are R-T unstable during the early expansion and may be the source of high velocity knots seen in Cas A.  相似文献   

13.
We investigated the effect of mass accretion on the secondary components in close binomy systems (M total ≤ 2.5 M M 2,0 ≤ 0.75 M ) exchanging mass in the case A. The evolution of the low-mass close binary systems (M total ≤ 2.5 M ) exchanging the mass in the case A depends on the three main factors:

  • -the initial mass ratio (q 0 = M 2,0/M 1,0), which determines the rate of mass transfer between components;
  • -the inital mass of the secondary component (M 2,0) and
  • -the effectiveness of the heating of the photosphere of the secondary component, by infalling matter.
  • The second factor allows to divide all systems into two essentially different groups:
    1. systems in which the secondary component is a star with a radiative envelope, or with a thin convection zone in the uppermost layers;
    2. and systems in which secondary component has a thick convective envelope or is fully convective.
    The systems from the first group evolve into contact in a characteristic time scale 105 – 107 years, and reach contact after transfering of 0.03 – 0.3 M . The mass exchange proceeds only in a thermal time scale. For the systems from the group b the effectiveness of the heating of the stellar surface is the most important. In the case when the entropy of the newly accreted matter is the same as the surface entropy of the secondary, a convective star should shrink upon accretion. Then contact binaries are not formed. In the case when the entropy of the infalling matter is greater then that on the surface, the reaction of the secondary is different. The radius of the secondary component grows rapidly in response to accretion, and the systems reaches contact after the 103 – 3 106 years, and after transfer of 0.002 – 0.2. M . The reaction of the secondary is determined by the formation of the temperature inversion layer below the stellar surface. Full references in: Sarna, M.J. and Fedorova, A.V. (1988) “Evolutionary status of W UMa-type Binaries — Evolution into contact”, Astron. Astrophys., in press.  相似文献   

    14.
    This is an observational review, with an emphasis on photometric data and their interpretation. Two lists are presented, one containing β Cephei stars, and the other, β Cephei suspects. These lists then serve as a basis for discussing such topics as the location of β Cephei stars in the observational and theoretical H-R diagrams, the evolutionary state of these stars, the period-luminosity and period-luminosity-color relations, and observational identification of pulsation modes. The paper also includes references to recent work connected with the theoretical discovery that an opacity mechanism is responsible for the excitation of β Cephei-star pulsations. Finally, observational programs for verifying the consequences of this discovery are suggested.  相似文献   

    15.
    Rood  R. T.  Bania  T. M.  Balser  D. S.  Wilson  T. L. 《Space Science Reviews》1998,84(1-2):185-198
    We report on our continuing efforts to determine 3He abundances in H II regions and planetary nebulae. Our detections of 3He in some PNe show that some stars produce large amounts of 3He. However the H II region abundances show no evidence for this production. From our sample of > 40 H II regions, the subsample which should yield the most reliable abundances has 3He/H abundances which scatter between 1-2 × 10-5. There is no trend with either galactocentric distance or metallicity. Even if we do not understand the underlying mechanisms, we see empirically that stars neither produce nor destroy 3He in a major way. We thus suggest that the level of the "3He Plateau" (3He/H = 1.5 -0.5 +1.0 × 10-5) is a reasonable estimate for the primordial 3He.  相似文献   

    16.
    We describe work that has recently been completed on deriving the fundamental parameters of eight WR stars through the photoionization modelling of their surrounding nebulae using non-LTE WR flux distributions. The resulting effective temperatures range from 57 000–71 000 K for the WN4-5 stars and <30 000–42 000 K for the WN6-8 stars. The derived stellar parameters are compared with those obtained from stellar emission line modelling. We find good agreement for the hot early WN stars, indicating that the non-LTE WR flux distributions have essentially the correct shape in the crucial far-UV region. We find lower temperatures for the four cooler late WN stars, particularly for the two WN6 stars. For the nebulae surrounding these stars, we find that the model flux distributions produce too much nebular ionization. We suggest that these discrepancies arise because of the lack of line-blanketing in the WR atmospheres. For the WO1 central star of G2.4+1.4, with strong nebular He II 4686 A emission, we derive a temperature of 105 000 K, somewhat less than previous estimates. The positions of our eight WR stars on the H-R diagram are compared with the evolutionary tracks of Maeder (1990) for solar metallicity. In common with previous workers, we find that our derived luminosities are too low, giving an initial mass range of 25–40 M, below that expected for the majority of WR stars.  相似文献   

    17.
    18.
    In this work I will try to give the most general complete view, comparatively with the conciseness, on RU Lupi, which is an Extreme Classical T Tauri star.T Tauri stars (TTSs) form a class of low luminosity stars which are going to the Main Sequence. They are young contracting objects that are in a particular Pre-Main-Sequence (PMS) evolutionary phase. The study of the Pre-Main-Sequence Stars (PMSSs) can provide crucial information on stellar evolution and formation of planetary systems, and therefore also indirect information on the processes occurred in the primeval solar system.For this reason, firstly I will briefly comment a sort of classification of stars in PMS phases (Section 2); then I will emphasize the main characteristics of TTSs and the current theories (Section 3). The up-to-date observational properties of RU Lupi (Section 4) and a discussion on their explanation within the framework of theories (Section 5) will allow me to draw the conclusions (Section 6) and to argue the most convenient line of investigation (Section 7) both experimental and theoretical for a better understanding of the underlying physics of these systems. Finally (Section 8), I will comment in general on the methodology of investigation of highly variable cosmic sources.An original result has been obtained in this work: the flare-like events (FLEs) of RU Lupi, occurring in all wavelength regions, are periodic with aP FLE=27.686±0.002 days. This periodicity could be the rotational period of the star.  相似文献   

    19.
    The evolution of massive stars   总被引:1,自引:0,他引:1  
    The evolution of stars with masses between 15 M 0 and 100M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution.The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities.Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15M 0 and a 25M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed.The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface.The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed.The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined.Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss.  相似文献   

    20.
    This paper surveys some of the astrophysical environments in which the effects of Lense-Thirring precession and, more generally, frame dragging are expected to be important. We concentrate on phenomena that can probe in situ the very strong gravitational field and single out Lense-Thirring precession in the close vicinity of accreting neutron stars and black holes: these are the fast quasi periodic oscillations in the X-ray flux of accreting compact objects. We emphasise that the expected magnitude of Lense-Thirring/frame dragging effects in the regions where these signals originate are large and thus their detection does not pose a challenge; rather it is the interpretation of these phenomena that needs to be corroborated through deeper studies. Relativistic precession in the spin axis of radio pulsars hosted in binary systems hosting another neutron star has also been measured. The remarkable properties of the double pulsar PSR J0737–3039 has opened a new perspective for testing the predictions of general relativity also in relation to the precession of spinning bodies.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号