共查询到20条相似文献,搜索用时 0 毫秒
1.
Time-resolved spectroscopy during the eclipse of short-period Algol systems, has shown their accretion disks to be small, turbulent structures with non-Keplerian velocity fields and asymmetries between the leading and trailing sides of the disk. These transient disks are produced by the impact of the gas stream on the mass-gaining star, and occur in systems where the star is just large enough to ensure the stream collision is complete. These emission line disks and the excess continuum emission do not always occur together. The permanent accretion disks in at least a few of the long-period Algol systems have features in common with the transient disks including non-Keplerian velocity fields. 相似文献
2.
The circumstellar plasma that produces Hα emission in Algol binaries has been investigated using phase-resolved, high dispersion data acquired from CCD and image tube detectors. Results are summarized in this paper, including discussions of the disk geometry and size, asymmetry in the distribution of material, long-term or non-phase dependent variability, mass outflow, the mean electron density, and how the latter properties vary with the system's period or location in the r-q diagram. Five systems which display permanent emission with periods ranging from 4.5 to 261 days (SW Cyg, UX Mon, TT Hya, AD Her, and RZ Oph) are intercompared. If P < 4.5 days, no permanent disks are observed, while if P > 6 days, stable disks with only slight long-term variations in their Hα brightness are seen. The most variable systems appear to be those in the 5 – 6 day range, but the star's position in the r-q diagram has the largest influence on its behavior. The trailing side of the accretion disk, where the gas stream impacts the inner disk, is usually brighter, and the leading side is often times more extended. The disk extends out to at least 95% of the Roche surface of the primary and is highly flattened (≤RP). Mass outflow near phase 0.5 is commonplace. 相似文献
4.
Summary A multi-year photometric program on long-period eclipsing binaries has begun to uncover some properties of accretion disks in these systems. Emission and transmission properties can sometimes be found from light curve features produced by partial eclipses of the disk by the cool star, and by partial occultations of the cool star by the disk. These disks do not have the classical alpha structure. They are optically thin normal to the orbital plane, but may be geometrically thicker than purely gravitationally-stratified disks. Disk gas may be contaminated by dust particles acquired from the outer layers of the cool loser. In some systems, high states, produced by elevated mass accretion by the hot star, occur, suggesting that the mass distribution in the disk is clumpy. However mass-transfer rates are found, they lie between 10 -7 and 10 -6 solar masses per year.While this binary sample is small at the moment, some of its properties are shared with other systems. The author has five-color observations of about a dozen additional systems, which may fill out this picture more fully. 相似文献
6.
A systematic search is reported for phenomena associated with circumstellar matter in interacting binary systems of the Algol and W Serpentis type. Ultraviolet emission lines have been detected by the author in 10 Algols and 6 Serpentids. No conspicuous difference exists between systems with disk accretion and those with direct stream impact. Evidence is indicated that the lines are formed predominantly by scattering in an induced stellar wind. Relative intensity of Fe II and Fe III emissions appears to be correlated with the spectral type of the gainer. It is suggested that in the Serpentids we see a thick disk nearly edge-on, but that the emission lines indicate the nature of the gainer inside. 相似文献
8.
A systematic search is reported for phenomena associated with circumstellar matter in interacting binary systems of the Algol and W Serpentis type. Ultraviolet emission lines have been detected by the author in 10 Algols and 6 Serpentids. No conspicuous difference exists between systems with disk accretion and those with direct stream impact. Evidence is indicated that the lines are formed predominantly by scattering in an induced stellar wind. Relative intensity of Fe II and Fe III emissions appears to be correlated with the spectral type of the gainer. It is suggested that in the Serpentids we see a thick disk nearly edge-on, but that the emission lines indicate the nature of the gainer inside. 相似文献
9.
In this work we examine the damping of Alfvén waves as a source of plasma heating in disks and magnetic funnels of young solar
like stars, the T Tauri stars. We apply four different damping mechanisms in this study: viscous-resistive, collisional, nonlinear
and turbulent, exploring a wide range of wave frequencies, from 10 −5Ω i to 10 −1Ω i (where Ω i is the ion-cyclotron frequency). The results show that Alfvénic heating can increase the ionization rate of accretion disks
and elevate the temperature of magnetic funnels of T Tauri stars opening possibilities to explain some observational features
of these objects.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
11.
We discuss the origin, evolution and fate of low-mass Algols (LMA) that have components with initial masses less than 2.5 M 0. The semi-major axes of orbits of pre-LMA do not exceed 20–25 R 0. The rate of formation of Algol-type stars is 0.01/year. Magnetic stellar winds may be the factor that determines the evolution of LMA. Most LMA end their lives as double helium degenerate dwarfs with M 1/M 2 0.88 (like L870-2). Some of them even merge through angular momentum loss caused by gravitational waves. 相似文献
12.
We present a-table of results from our survey of Algols, conducted with the Lick Observatory ITS scanners and the IUE spectrometer.We have determined the continuous flux distributions for a number of the Algol systems. Optical scans were made with the ITS scanners of Lick Observatory, while for the ultraviolet flux distributions, we used the IUE satellite spectrometer in the low-dispersion mode. The following table summarizes the results: {ie340-01} 相似文献
14.
This work is concerned with binary systems that we call moderately close. These are systems in which the primary (by which we mean the initially more massive star) fills its Roche lobe when it is on the giant branch with a deep convective envelope but before helium ignition (late case B). We find that if the mass ratio q(= M
1/ M
2) < q
crit
= 0.7 when the primary fills its Roche lobe positive feedback will lead to a rapid hydrodynamic phase of mass transfer which will probably lead to common envelope evolution and thence to either coalescence or possibly to a close binary in a planetary nebula. Although most Algols have probably filled their Roche lobes before evolving off the main-sequence we find that some could not have and are therefore moderately close. Since rapid overflow is unlikely to lead to an Algol-like system there must be some way of avoiding it. The most likely possibility is that the primary can lose sufficient mass to reduce q below q
crit
before overflow begins. Ordinary mass loss rates are insufficient but evidence that enhanced mass loss does take place is provided by RS CVn systems that have inverted mass ratios but have not yet begun mass transfer. We postulate that the cause of enhanced mass loss lies in the heating of the corona by by magnetic fields maintained by an — dynamo which is enhanced by tidal effects associated with corotation. In order to model the the effects of enhanced mass loss we ignore the details and adopt an empirical approach calibrating a simple formula with the RS CVn system Z Her. Using further empirical relations (deduced from detailed stellar models) that describe the evolution of red giants we have investigated the effect on a large number of systems of various initial mass ratios and periods. These are notable in that some systems can now enter a much gentler Algol-like overflow phase and others are prevented from transferring mass altogether. We have also investigated the effects of enhanced angular momentum loss induced by corotation of the wind in the strong magnetic fields and consider this in relation to observed period changes. We find that a typical moderately close Algol-like system evolves through an RS CVn like system and then possibly a symbiotic state before becoming an Algol and then goes on through a red giant-white dwarf state which may become symbiotic before ending up as a double white dwarf system in either a close or wide orbit depending on how much mass is lost before the secondary fills its Roche lobe. 相似文献
15.
Four different aspects related to the evolution of Algols are discussed: the occurrence of a contact phase during the mass transfer, the evolution of short period systems evolving through case A mass transfer, the influence of the mass transfer on the surface abundances of both components, and the problem of the initial parameters of Algol systems. For the latter, a search is made for conservative case B systems. UZ Cyg seems to be a good candidate for such evolution. Finally, some remarks are given on the initial values of the low mass Algol S Cancri. 相似文献
16.
This work is concerned with binary systems that we call ‘moderately close’. These are systems in which the primary (by which we mean the initially more massive star) fills its Roche lobe when it is on the giant branch with a deep convective envelope but before helium ignition (late case B). We find that if the mass ratio q(= M 1/ M 2) < q crit = 0.7 when the primary fills its Roche lobe positive feedback will lead to a rapid hydrodynamic phase of mass transfer which will probably lead to common envelope evolution and thence to either coalescence or possibly to a close binary in a planetary nebula. Although most Algols have probably filled their Roche lobes before evolving off the main-sequence we find that some could not have and are therefore ‘moderately close’. Since rapid overflow is unlikely to lead to an Algol-like system there must be some way of avoiding it. The most likely possibility is that the primary can lose sufficient mass to reduce q below q crit before overflow begins. Ordinary mass loss rates are insufficient but evidence that enhanced mass loss does take place is provided by RS CVn systems that have inverted mass ratios but have not yet begun mass transfer. We postulate that the cause of enhanced mass loss lies in the heating of the corona by by magnetic fields maintained by an α — ω dynamo which is enhanced by tidal effects associated with corotation. In order to model the the effects of enhanced mass loss we ignore the details and adopt an empirical approach calibrating a simple formula with the RS CVn system Z Her. Using further empirical relations (deduced from detailed stellar models) that describe the evolution of red giants we have investigated the effect on a large number of systems of various initial mass ratios and periods. These are notable in that some systems can now enter a much gentler Algol-like overflow phase and others are prevented from transferring mass altogether. We have also investigated the effects of enhanced angular momentum loss induced by corotation of the wind in the strong magnetic fields and consider this in relation to observed period changes. We find that a typical ‘moderately close’ Algol-like system evolves through an RS CVn like system and then possibly a symbiotic state before becoming an Algol and then goes on through a red giant-white dwarf state which may become symbiotic before ending up as a double white dwarf system in either a close or wide orbit depending on how much mass is lost before the secondary fills its Roche lobe. 相似文献
17.
Evidence on the issues of whether the W Serpentis stars are a coherent class, and how they may interface with the Algol systems, is reviewed, with emphasis on the idea that they are semi-detached systems in the latter part of the rapid phase of mass transfer, with optically and geometrically thick disks of transferred gas around the (now) more massive star. We are interested in what will be seen when the gas clears away, and mainly examine the idea that it will be an Algol-type system. More particularly, consideration is given to centrifugally limited accretion as a mechanism to build up a substantial disk, and the presumed evolutionary sequence is from a W Ser to a rapidly rotating Algol to a normal Algol system. Systems such as V367 Cyg and RW Tau fit into this scheme only with difficulty. Because it is extremely difficult to measure the rotation of some W Ser (mass) primaries, it is natural to look at the rotation statistics of Algols to test this idea. The badly behaved light curves and spectroscopy of some Algols (eg. U Cep, RZ Sct) may be attributable to the double contact condition, and the ramifications of this possibility are discussed. If so, the rotation statistics of Algols should show two spikes, corresponding to the two special conditions into which a system should be driven by tidal braking and centrifugally limited spinup. Present rotation statistics do show these spikes. Algols should flip between these states fairly quickly, depending on the mass transfer rate. Thus, to the extent that the meager statistics can be accepted as meaningful, the new (fourth) morphological type of close binary (double contact) has attained demonstrable reality. The rotation statistics are presented in terms of a particular rotation parameter, R, which is zero for synchronism and unity for the centrifugal limit. Future work should develop rotation statistics to see if the rotational lobe-filling (R = 1) spike persists. It should also look into whether W Ser primaries are on the hydrogen burning main sequence, or in general what they are. We also need more light curves of W Ser type systems, high resolution line profiles for the (mass) primaries (with particular attention to the W Ser-Algol transition cases), and spectroscopy of low inclination W Serpentis systems, such as KX And. 相似文献
18.
A brief review of various theoretical approaches to model accretion disks is presented. Emphasis is given to models that determine self-consistently the structure of a disk together with the radiation field. It is argued that a proper treatment of the vertical structure is essential for calculating theoretical spectra to be compared with observations. In particular, it is shown that hot layers above an accretion disk (sometimes called disk “chromospheres” or “coronae”), whose presence is indicated by recent UV observations of strong emission lines of highly ionized species, may be explained using simple energy balance arguments. 相似文献
20.
The high FeO concentrations measured by VIKING for the Martian soils correspond to all probability to a FeO-rich mantle. In general, the VIKING XRF-data indicate a mafic crust with a considerably smaller degree of fractionation compared to the terrestrial crust.In recent years evidence has been collected which points towards Mars being the parent body of SNC-meteorites and, hence, these meteorites have become a valuable source of information about the chemistry of Mars. Using element correlations observed in SNC-meteorites and general cosmochemical constraints, it is possible to estimated the bulk composition of Mars. Normalized to Si and Cl, the mean abundance value for the elements Ga, Fe, Na, P, K, F, and Rb in the Martian mantle is found to be 0.35 and thus exceeds the terrestrial value by about a factor of two. Aside pressure effects and the H 2O poverty, the high P and K content of the Martian mantle may lead to magmatic processes different from those on Earth.The composition of the Earth's mantle can successfully be described by a two component model. Component A: highly reduced and almost free of all elements more volatile than Na; component B: oxidized and containing all elements in Cl-abundances including volatile elements. The same two components can be used as building blocks for Mars, if one assumes that, contrary to the inhomogeneous accretion of the Earth, Mars accreted almost homogeneously. The striking depletion of all elements with chalcophile character indicates that chemical equilibrium between component A and B was achieved on Mars which lead to the formation of significant amounts of FeS which, on segregation, extracted the elements according to their sulphide-silicate partition coefficients. While for the Earth a mixing ratio AB = 8515 was derived, the Mars ratio of 6040 reflects the higher concentrations of moderately volatile elements like Na, K, and sulphur on Mars. A homogeneous accretion of Mars could also explain the obvious low abundances of water and primordial rare gases. 相似文献
|