首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A simple fiber-optic radar calibration target is described. Its operation is based on a wideband fiber, a laser transmitter that is directly modulated by the down-converted radar signal and an optical diode receiver recovering said signal. Further up-conversion having a common local oscillator with the first mixer ensures fidelity of the calibration return. Measured useful bandwidth exceeds 200 MHz and practically any radar RF frequency can be handled when suitable mixers are employed. Amplifiers can be added to the down-converted path as desired to compensate for the fiber loss. Modulation and LO sweep provide easy ways of introducing artificial fluctuations and Doppler frequencies. Particularly pulsed radars are readily tested with the proposed scheme as no restrictions are posed by the radar's TR-switch delays.  相似文献   

3.
Measurements of solar total irradiance and its variability   总被引:1,自引:0,他引:1  
The development of electrically self calibrated cavity pyrheliometric instrumentation that occurred in the early 20th century provided the technological base for experiments to detect variability of the solar total irradiance. Experiments from ground based observatories, aircraft and balloons during the 1st half of the 20th century were unable to achieve sufficient accuracy or long term precision to unambiguously detect irradiance variations of solar origin. Refinements in pyrheliometric technology during the 1960's and 1970's and the accessibility of extended experimental opportunities above the Earth's atmosphere in recent years have provided the first direct observations of solar total irradiance variability and provided the cornerstone observations of a long term database on solar irradiance. A program of solar irradiance monitoring has evolved to sustain the database over at least 22 years, corresponding to a single cycle of solar magnetic activity, and the shortest well identified cycle of climate variation. Direct links between total irradiance variations, solar magnetic activity and the solar global 5 min oscillation phenomena have been derived from recent space flight observations by the SMM/ACRIM I experiment.  相似文献   

4.
This review paper is a survey of infrared astronomy up to early 1969. The techniques and photometric standards are mentioned briefly, and results cover solar, lunar, and planetary observations. Point sources and extended sources both within and beyond the Galaxy are included, ending with the problem of cosmic background radiation. It is concluded that great progress will be possible when large infrared telescopes are placed above the atmosphere in orbit for extended periods of time.This work was conducted under the McDonnell Douglas Corporation Independent Research and Development Program.  相似文献   

5.
A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.  相似文献   

6.
Infrared astronomical measurements are calibrated against reference sources, usually primary standard stars that are, in turn, calibrated either by direct or indirect means. A direct calibration compares the star with a certified source, typically a blackbody. Indirect methods extrapolate a direct measurement of the flux at one wavelength to the flux at another. Historically, α Lyr (Vega) has been used as the primary standard as it is bright, easily accessible from the northern hemisphere, and is well calibrated in the visual. Until recently, the direct absolute infrared calibrations of α Lyr and those derived from the absolute solar flux scaled to the observed spectral energy distributions of solar type stars increasingly diverged with wavelength from those obtained using a model atmosphere to extrapolate the absolute visual flux of Vega into the infrared. The exception is the direct calibration by the 1996/97 Midcourse Space Experiment of the absolute fluxes for a number of the commonly used infrared standard stars, including Vega.In the mid-1980s, the Air Force Geophysics Laboratory began a program that led to the establishment of a network of stars with which to calibrate infrared space-based sensors. α Lyr and a CMa were adopted as the fundamental references and the absolute 1.2 to 35 µm infrared spectral energy distributions for the 616 secondary standard stars in the network were derived through spectral and photometric comparisons with the primary standards. The stars are also used for calibration at ground-based infrared observatories. For applications in which the network stars may not be bright enough, particularly at the longer infrared wavelengths, planets and the larger asteroids are used. Planets and asteroids move and rather sophisticated thermal modeling of the bodies is required to predict the disk-integrated brightness at a specific time with reasonable accuracy. The Infrared Space Observatory applied such a sophisticated ‘thermo-physical’ model to the largest asteroids to support calibration of the sensors to a claimed accuracy of within 5%. The AFRL program also created a spectral atlas of the brightest stars in the sky that, although they are variable, may be used for calibration if the large(r) attendant uncertainties are acceptable.  相似文献   

7.
摄像机标定研究   总被引:3,自引:0,他引:3  
目前,摄像机标定是计算机视觉领域中的研究热点之一,其目的是通过摄像机拍摄的单幅或多幅图像来确定摄像机的参数模型,进而获得摄像机的各项参数,在机器人导航、三维重建、生物医疗、虚拟现实、视觉监控、视觉伺服等领域均有广泛的应用前景。本文综述了传统标定方法,自标定方法和基于主动视觉的标定方法的研究现状,对其优缺点作出评价并指出发展方向。  相似文献   

8.
Three sources of beamforming deterioration are identified for an FMCW radar. These all relate to time-of-arrival and cable delays. There are small range-dependent phase errors at the receiver outputs. The delays cause frequency shifts, which produce phase errors at the discrete Fourier transform (DFT) outputs after ranging. These frequency shifts cause amplitude errors when the signals are resolved into the same range bin. Two methods of compensating for phase and amplitude errors are proposed. The first corrects for phase errors prior to beamforming. Amplitude errors are ignored but the residual error is usually small. The second method aligns the receiver frequencies digitally before ranging. This eliminates the phase errors and the amplitude errors at the DFT range estimates  相似文献   

9.
A pragmatic approach is presented to the on-orbit calibration of the spaceborne gimbaled parabolic reflector antennas to enhance their pointing and tracking accuracies in the presence of unknown structural deformations and other errors. The technique described is based on the second-order extended Kalman filter. Except for some knowledge of Kalman filtering, the work is self-contained and tutorial in character, developing necessary error models and deriving most pertinent equations from first principles. Preliminary simulations, from which covariance analysis results have been obtained, indicate a 66% improvement in the accuracy of the antenna pointing angles  相似文献   

10.
The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

11.
12.
根据红外测温仪的原理,结合红外测温仪的应用实例,分析了影响红外测温仪示值的主要因素,对如何正确使用和校准红外测温仪给出了建议。  相似文献   

13.
Most of our knowledge regarding planetary atmospheric composition and structure has been achieved by remote sensing spectroscopy. Planetary spectra strongly differ from one planet to another. CO2 signatures dominate on Mars, and even more on Venus (where the thermal component is detectable down to 1 μm on the dark side). Spectroscopic monitoring of Venus, Earth and Mars allows us to map temperature fields, wind fields, clouds, aerosols, surface mineralogy (in the case of the Earth and Mars), and to study the planets’ seasonal cycles. Spectra of giant planets are dominated by H2, CH4 and other hydrocarbons, NH3, PH3 and traces of other minor compounds like CO, H2O and CO2. Measurements of the atmospheric composition of giant planets have been used to constrain their formation scenario.  相似文献   

14.
A new technique is developed to compensate multiple-wavelength distortion in airborne antenna arrays. This approach exploits the phase information in microwave reflections from arbitrary terrain. To handle reflections incident over a broad angle, a range-Doppler preprocessor is used in each element channel to resolve wavefronts incident simultaneously from different directions. The phase information for each direction of arrival is compared between elements and processed by optimal estimators to determine the phase corrections needed to compensate the distortion. To develop the estimators, a statistical model of the complex baseband terrain reflections is developed. This is in turn used to generate conditional probability densities involving the range Doppler observations and the parameters to be estimated. These densities are subsequently used to develop minimum variance and maximum likelihood estimators. The new estimators use additional information that has not been exploited by previous techniques and therefore provide enhanced performance  相似文献   

15.
Based on the experience of the IRTS, a new infrared satellite mission, Infrared Imaging Surveyor:IRIS is now being proposed to ISAS. The IRIS will be thrown into the sun synchronous orbit at 900km altitude by the MV rocket which is now under development in ISAS. With use of new cryogenic technologies, considerably light weight with large aperture telescope is designed. Owing to the large format states-of-art array detectors, the IRIS has an enormous capability for the survey observation, and will provide new discoveries on the formation and evolution of galaxies, brown dwarfs, protoplanetary disk, interstellar matter and so on.  相似文献   

16.
The SeaWinds Scatterometer is a Ku-band Earth orbiting remote sensing radar. It has a 1 m dish antenna shared by two beams with respective nadir look angles of 40 and 46 deg, scanning azimuthally to provide greater than 90% daily coverage of the Earth at an altitude of 800 km. The first sensor was launched in 1999 and produces sea surface wind field to 2 m/s accuracy at 25 km resolution. The design and calibration of the SeaWinds radar is described here.  相似文献   

17.
本文运用红外辐射理论分析了红外抑制器缩比模型与原型件红外辐射特性的关系。通过对缩比模型与原型件的固体壁面和排气流定向红外辐射强度的分析,得出了缩比模型与原型件之间红外辐射强度的基本换算关系是尺寸比的平方关系,但应该乘上一个修正系数。  相似文献   

18.
The IRTS is a first Japanese infrared satellite mission which will be launched on February of 1995 by HII rocket. The IRTS is one of the mission experiments aboard the small space platform, SFU. The telescope aperture of the IRTS is 15cm, but is cooled by liquid Helium to realize very low background condition. Four instruments are installed on the focal plane which cover wide wavelengths from near infrared to submillimeter regions. The IRTS is optimized to observe the diffuse extended emission, and will survey about 10% of the sky in 20 days of mission life. The IRTS will provide significant information on cosmology, interstellar matter, late type stars, and interplanetary dust.  相似文献   

19.
20.
热线风速仪主要用于湍流流场测量。热线测量的主要误差来源是由环境温度变化导致的热线校准参数的变化。Brunn提出的传统温度效应修正方法在环境温度变化较大的情况下会带来明显的误差。本文经过理论推导,提出了一种新的基于隐式温度修正的二维热线风速仪校准方法,并开展了热线校准实验研究。结果表明:当环境温度变化在4℃范围内时,本文提出的方法与Brunn方法的测量精度相当;当环境温度变化超过4℃时,本文提出的方法的测量精度远高于Brunn方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号