首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
后掠压缩角激波边界层柱形干扰研究   总被引:2,自引:0,他引:2  
本文给出了由后掠压缩角模型引起的激波和湍流边界层干扰的实验研究结果,着重提出了柱形干扰中的尺度特性。本实验中的马赫数为1.79,2.04和2.50,相应的雷诺数为2.42~2.47×10~7/米。模型后掠角的变化范围是0°到60°,流向压缩角的变化范围为0°到30°。实验结果表明,在本实验的马赫数范围内,干扰流动的上游影响区呈现柱形或锥形,如果考虑横流效应,柱形干扰区的上游影响尺度能和二维压缩角的上游影响尺度相关联。其相关关系仅受后掠角和来流马赫数的影响,而与压缩角大小无关。  相似文献   

2.
后掠激波边界层干扰中Mach数对特性区影响的研究   总被引:3,自引:0,他引:3  
 本文介绍了由后掠压缩角模型引起的激波和湍流边界层干扰的实验研究。实验雷诺数Re=2.42~2.47×10~7/m,Ma_∞=1.79,2.04和2.50。模型共15个,其后掠角变化范围是0°~60°,流向压缩角变化范围为10°~30°。实验结果表明,在本实验范围内,激波边界层干扰中的上游影响区都呈现出柱形区或锥形区特性;柱形区和锥形区之间的边界随来流Mach数减小向锥形区发展。该边界主要决定于无粘激波的形式。  相似文献   

3.
张华  邓学蓥 《航空学报》1995,16(3):89-92
建立了激波/边界层干扰脉动压力测试系统。对一组后掠压缩角产生的激波/边界层干扰脉动压力流场进行测量,结果表明,脉动压力时均值及其分布与静态测量得到的结果一致。测量还发现在实验的锥形干扰范围内,未出现类似于二维干扰中由非定常低频振荡激波引起的间歇现象。  相似文献   

4.
针对高超声速进气道内强唇罩激波/边界层干扰带来的大尺度分离、流动损失大等问题,提出了基于后掠唇罩的入射激波/边界层干扰流动控制方法。在来流马赫数3、唇罩压缩角18°条件下,仿真对比了后掠/平直2类唇罩2种构型干扰区内的流动特性。结果表明:后掠唇罩入射激波/边界层干扰产生的分离包尺度沿展向呈现逐渐增加的趋势,利用三维后掠入射激波产生的自对称面往两侧的顺压梯度,驱动低能流往两侧迁移,可使得分离区流向尺度相对于平直唇罩构型最大可减小50.6%;在后掠唇罩干扰区内,压力分布呈现以分离线曲率中心为虚拟中心的椭圆相似特征。  相似文献   

5.
高文智  李祝飞  曹绕  曾亿山  杨基明 《推进技术》2019,40(11):2488-2497
为指导V形溢流唇口下游的进气道内部流动分析,采用数值模拟开展V形尖前缘对二维斜激波入射平板边界层流动的影响研究。以气流偏转角6°的二元楔面为基准激波发生器,设计了展向气流收缩角α(0°~60°, 0°对应二元构型)的V形前缘构型,开展对比研究。结果表明,V形前缘构型使得激波入射位置沿展向不均匀、流动具有明显三维特征,并且干扰区壁面压强上升、分离区尺度明显增大。在α=0°~60°范围内,干扰区流动的不均匀程度、分离区尺度随α增大单调增加。进一步分析表明,V形前缘构型干扰具有中间平直、侧边斜掠的耦合入射特性,体现为对称面壁面压强符合自由干扰理论,侧边斜掠入射区参数符合斜掠干扰的锥形流特征。对比二元与α=45°构型的无粘模拟结果,V形前缘会诱导展向两侧对称的斜掠激波、并在对称面相互干扰产生平直的“桥”激波,这使得激波入射位置沿展向不均匀并偏向下游。其中对称面处平直入射激波压升比(2.49)高于二元构型结果(2.24),侧边斜掠激波强度与二元构型基本一致。这些因素综合导致V形前缘构型的分离尺度增大。  相似文献   

6.
王子运  谭慧俊  张悦 《推进技术》2022,43(3):112-121
为了研究外压式进气道处于临界工况时结尾正激波同时与压缩面和侧板上边界层的相互干扰,专门设计了三组具有不同前伸长度侧板的简化构型作为研究对象,利用数值模拟手段评估了侧板边界层厚度对正激波/边界层干扰特性的影响。仿真结果表明,当没有侧板边界层参与干扰时流动呈现较好的准二维特性,但当侧板边界层参与干扰后将形成较强的角区干扰结构,该角区三维干扰结构与对称面上的准二维干扰结构存在此消彼长的关系。此外,波系的空间形态也将由“准二维λ波”结构变为“双λ波+角区压缩波”结构,波系形态的改变则进一步导致壁面回流区分布以及摩擦力线拓扑结构变得更加复杂。  相似文献   

7.
后掠翼身干扰区流动特性及改善措施研究   总被引:2,自引:0,他引:2  
利用流动显示及表面压力测量方法研究了后掠翼身干扰区的流动特性,并研究了用小边条等措施改善干扰区的流动特性的效果。结果表明,随着不同机翼后掠角、不同迎角及不同Re数对干扰区流动特性的影响,流成可以从一涡系变成多涡系由定常变成非定常,而且在一定的Re数以后涡系会湍流化;翼身干扰区上游的的逆压梯度是导致边界层分离的物理原因,利用面积很小的边条可以降低干扰区局部的逆压梯度,可以导至干扰区的旋涡很弱,甚至不  相似文献   

8.
连续双扫掠激波/湍流边界层干扰流动特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为了探究连续双扫掠激波/湍流边界层干扰的流动特性,采用仿真方法对一双尖鳍/平板物理模型进行研究。结果表明:双扫掠激波/湍流边界层干扰形成的两个干扰区存在明显的相干现象,虽然第一道扫掠激波/边界层干扰流动仍具有典型的准锥形相似特性,但受其干扰所形成的非均匀流的影响,第二道扫掠激波/边界层干扰却不再具有准锥形相似特性,同时第二个干扰区将影响其上游临近气流的运动甚至影响第一个干扰区的再附线和分离线等结构。两个干扰区形成各自的λ波结构,并且沿着流向两个干扰区内的激波结构相互汇聚,最终合并为单个更强的λ波结构;不仅如此,两个干扰区内还形成了复杂的旋涡结构,包括一级主旋涡和二级主旋涡,这些旋涡向下游运动,最终融合成一个尺度更大的锥形主旋涡。  相似文献   

9.
局部电弧丝状放电控制激波/边界层干扰的数值研究   总被引:3,自引:2,他引:1       下载免费PDF全文
王浩  程邦勤  纪振伟  胡伟波 《推进技术》2017,38(11):2431-2438
采用数值模拟的方法研究局部电弧丝状放电激励对激波/边界层干扰引起的气流分离的控制效果和机理。研究发现在干扰区上游和干扰区内进行电弧放电能够有效控制边界层的分离,且控制效果随着能量输入增大而增强,最大可使分离区减小40.6%,而在干扰区下游作用时对激波/边界层干扰基本没有影响。结合热阻塞效应,可得出电弧放电的作用机理是其产生的焦耳热在流场中造成局部流场阻塞,形成等离子体虚拟型面,在流场中诱导出微弱的斜激波和旋向相反的漩涡,增大了边界层内流体的动量,使其抵抗分离的能力增强,从而抑制了气流的分离。  相似文献   

10.
弯曲后掠压缩拐角激波/湍流边界层干扰特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
赵有喜  张悦  谢旅荣  张兵  陈亮 《推进技术》2021,42(2):309-318
为研究内转式进气道前体压缩激波与机体边界层之间的弯曲后掠压缩拐角激波/湍流边界层干扰现象,对矩形捕获型线、直母线圆锥基准流场生成的内转式进气道压缩型面进行简化,并利用数值仿真方法对简化模型进行计算,分析并对比了非耦合和耦合情况下弯曲后掠压缩拐角激波/湍流边界层干扰特性.结果表明:非耦合模型所形成的分离区呈弯刀形,分离区...  相似文献   

11.
基于瞬态液晶测量技术的收缩-张形孔气膜冷却特性   总被引:1,自引:0,他引:1  
采用一种进行全表面测量的瞬态液晶测量技术测量了新型气膜孔(收缩-张形孔)的气膜冷却特性,研究了动量比对冷却效率和换热系数的影响,并与传统的圆柱形孔气膜冷却特性进行了对比,结果表明:收缩-扩张形孔中心线附近区域的冷却效率相对较低,而两孔之间区域的冷却效率相对较高,与圆形孔分布规律相反;在上游区域,两孔中间区域的换热系数比相对孔中心线附近区域较高,而在下游区域,两孔中间区域的换热系数比相对孔中心线附近又较低,与圆形孔相比也有较大不同。相对于圆柱形孔,收缩缝形孔的平均换热系数比在上游较高,在下游较低;收缩-扩张形孔喷出气膜对下游壁面区域的有效覆盖率远大于圆柱形孔,其展向平均冷却效率明显高于圆柱形孔;收缩-扩张形孔在动量比为2时的平均冷却效率最高。  相似文献   

12.
数值模拟了前置圆柱列涡轮静叶栅的三维流动,详细分析了圆柱列动静状态下叶栅流向的气动特性变化,发现不同时刻上游尾迹扫过下游叶片排不同位置,是造成多级涡轮非定常特性的主要原因。通过圆柱列动静两种状态下叶片表面压力脉动、流场变化特性的比较,发现静叶表面的压力分布存在差异,静叶前缘受上游圆柱列影响较大;随着流动的继续至叶栅流道下游,差异逐渐变小,直至消散;而叶栅前缘的差异主要通过叶片自身具有的大转折角逐步被抹平。  相似文献   

13.
吴忧  徐旭  陈兵  杨庆春 《航空学报》2021,42(z1):726359-726359
横向喷流和逆向喷流广泛用于高超声速飞行器气动力与气动热控制。采用格心型非结构有限体积法求解基于三温度热化学非平衡模型的全Navier-Stokes方程,对高空、高马赫数来流条件下二维圆柱状构型飞行器的喷流干扰流场进行数值模拟,研究了仅存在横向或逆向喷流以及横/逆向喷流同时存在时的复杂流场结构以及喷流降低热流、减阻、改善升力的具体效果。通过控制变量的方法,探究了不同参数(马赫数、静压)的喷流对流场结构及飞行器的气动力、气动热的影响规律。结果表明:在一定条件下,当逆向喷流与横向喷流同时存在时,下游的横向喷流可以影响到上游的逆向喷流流场结构;逆向喷流可以显著减小高超飞行器阻力,并降低头部壁面热流峰值,而横向喷流对高超飞行器的升力特性有一定提高;在横向喷流已用于飞行器姿态控制的情况下,一定条件下可以同时使用逆向喷流,既可以减阻、又可以降低热流峰值,还可以提升升力。  相似文献   

14.
低速轴流压气机中前后静叶对动叶顶部区域流动的影响   总被引:6,自引:3,他引:3  
数值研究了某二级低速轴流压气机在高负荷工况下,动叶前后动静干涉对动叶顶部区域非定常流动的影响。结果显示一次泄漏涡和二次泄漏涡是动叶顶部的主要流动特征。下游静叶干涉增加了动叶顶部间隙流的非定常波动强度和泄漏损失。上游静叶干涉减少了动叶顶部二次泄漏流强度。同无动静干涉相比,同时存在上下游动静干涉使动叶顶部区域总压损失减少9.1%,其收益主要来自上游静叶的非定常干涉。  相似文献   

15.
在平板上放置圆柱形成角区流动,利用布置在圆柱上游平板上的二维和三维槽道来控制或削弱角区马蹄涡,采用风洞试验和数值模拟开展研究。结果表明,二维和三维槽道均能推迟边界层的分离,使圆柱根部马蹄涡的强度减弱、尺度减小;同时槽道上游压力和逆压梯度均有所下降,槽道下游压力显著升高而逆压梯度总体降低。二维槽道对马蹄涡强度的削弱为61.15%~66.51%,而三维槽道对其削弱为66.65%~80.93%。讨论了三维槽道参数(包括槽道宽度、深度以及其中心线与圆柱中心距离)对控制效果的影响。槽道与圆柱的距离在对马蹄涡的控制中起主导作用。槽道控制的机理是,由于槽道的抽吸效应使得其上游靠近壁面的边界层中涡量较高的流体被卷吸入槽道形成槽道涡,槽道涡由三维槽道输运到下游。同时,随着槽道与圆柱的距离减小,更多的边界层流体流入槽道内。正是上述"槽道效应"使得槽道下游的逆压梯度降低,马蹄涡强度减弱,分离区范围减小。  相似文献   

16.
邹东阳  林敬周  黄洁  刘君 《航空学报》2021,42(3):124141-124141
给出了一种基于非结构动网格技术的三维激波装配方法。在该方法中,三维激波面由被标记为激波属性的网格点连接构成,标记为激波属性的网格点称为激波点。激波点具有两组参数分别代表激波的上下游,利用激波点上下游参数求解R-H关系式获得激波点运动速度。非结构动网格技术的使用允许激波大幅度运动,降低了对初始激波位置的要求。通过引入网格属性定义避免了对计算网格进行分区,增加了装配激波的灵活性。通过球柱体绕流问题验证了该三维装配方法的合理性,针对三维激波装配中比较困难的交点装配问题,通过对三维激波反射以及三维激波相交等算例进行研究找到了可用的三维激波交点运动速度的确定方法,保证了激波运动过程中交点运动与流场求解之间的相容性,获得了相应的装配结果。  相似文献   

17.
采用等效盘模型与全三维黏性仿真相结合的方法,对旋翼下洗流干扰下直升机/粒子分离器的一体化流场特性进行了仿真研究.验证了ROBIN(rotor body interaction)模型,对类“阿帕奇”直升机/粒子分离器进行了大、小前进比时不同桨盘载荷下的一体化流场特性仿真,并对比了一体化条件、孤立条件下粒子分离器工作特性差异.结果表明:小前进比时下洗流对粒子分离器进口的分离流结构影响较大,且下洗流携带动能的叠加使得一体化条件下扫气流出口的总压损失反而比独立粒子分离器低;较大前进比状态下,下洗流干扰使得齿轮箱外罩鼓包后的分离区位置向两侧偏移,范围相比无桨盘载荷状态有所扩大,不过其对粒子分离器气动性能参数的影响并不明显.   相似文献   

18.
采用Euler-Lagrangian方法,重点研究了柱状薄膜充气过程的流场特性.研究表明:在入口气流速度为50~90m/s,入口气流压力为1.0~1.4MPa条件下,柱状薄膜在充气初始阶段,两端会出现上下摆动的鼓包现象.通过分析柱状薄膜内部流场中的气流组织、涡量输运以及旋涡与激波相互作用,发现气流在充气口附近形成弧形激波,使流动发生偏转.偏转气流在充气口两侧形成旋涡,和激波相互作用形成局部超声速区.另一方面,对柱状薄膜应力分布的研究发现,充入气流造成柱状薄膜顶部与两端的局部应力集中,是影响稳定性与安全性的重要因素.不同入口气流压力与速度条件下柱状薄膜应力分布与摆动情况表明,入口气流压力的变化对安全性的影响相对重要,而入口气流速度对稳定性的影响更加显著.   相似文献   

19.
采用瞬态液晶测量技术测量了圆柱形孔的冷却特性分布,研究了动量比的影响.结果表明:大动量比下,射流脱离壁面后重新贴回壁面,冷却效率沿流向率逐渐升高,且下游孔间区域的冷却效率较高;小动量比的冷却效率分布规律与此相反.动量比越大,换热增强效果越显著;在上游区域,大动量比射流诱导出的回流涡形成了一个局部强换热区;在下游区域,各个动量比的传热系数比分布比较相似,两孔中间区域的换热强于孔中心线附近区域.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号