首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 148 毫秒
1.
空间站组合体惯性系内角动量管理控制   总被引:1,自引:0,他引:1  
针对惯性系内重力梯度力矩与气动力矩的常值部分积累引起控制力矩陀螺饱和的问题,在惯性系内建立空间站的动力学模型并进行线性化,利用滤波变量将系统状态方程扩维,采用LQR方法设计系统反馈控制增益矩阵,实现空间站在惯性系内的角动量管理控制.惯性系内重力梯度力矩、气动力矩由轨道角速度整数倍的频率成份构成,可以根据实际情况增加抑制不同频率成份的滤波变量,用于抑制不同频率成份干扰力矩对空间站姿态或控制力矩陀螺角动量的干扰,从而使空间站长期在惯性系内飞行而不需要进行角动量的卸载.仿真验证了控制器的性能.  相似文献   

2.
提出了一种滚动一偏航平面两自由度偏置动量控制方法。在分析某通信卫星平台所受的环境干扰力矩对姿态扰动的基础上,依据Y轴偏置动量大小的影响、构型的角动量包络、动量轮最大角动量变化值和可靠性等参数,与现有的四轮金字塔构型两自由度偏置动量控制进行了比较,其性能更优越。  相似文献   

3.
气动力矩和重力梯度矩实现微小卫星三轴姿态控制   总被引:2,自引:0,他引:2  
提出运用低轨道两个主要环境力矩 (重力梯度矩和气动力矩 )实现微小卫星三轴姿态被动控制方案。重力梯度矩提供俯仰和滚转恢复力矩 ,气动力矩提供偏航和俯仰恢复力矩 ;通过姿态稳定性分析和姿控过程动态仿真 ,结果表明此卫星具有结构简单、姿态稳定精度高的优点。  相似文献   

4.
基于参数辨识的大型航天器自适应角动量管理   总被引:1,自引:0,他引:1  
航天器姿态控制/角动量管理(ACMM)通过调整航天器姿态使引起控制力矩陀螺(CMG)角动量积累的扰动力矩相互抵消,从而有效减小用于CMG卸载的燃料消耗.设计的基于在线参数辨识的自适应ACMM控制器由在线参数辨识回路和反馈线性化回路构成.反馈线性化回路通过状态变换以及相应的输入变换,将原ACMM系统精确等价为一线性系统,通过线性控制器的设计得到适用于原系统的非线性控制律.在线辨识回路利用闭环控制信息对航天器质量特性进行辨识,弥补了反馈线性化对系统模型参数敏感的不足.以空间站组合体舱段转移任务为例进行的数学仿真显示,控制器在力矩平衡姿态(TEA)远离对地定向姿态时具有良好控制性能.  相似文献   

5.
在进行空间站力矩平衡姿态(TEA)控制设计时,需要将姿态动力学、动量管理与干扰抑制滤波器相结合形成系统模型,以抑制外部干扰对姿态的影响.带有区域配置的改进LQR算法用于线性化的系统模型,能够使得系统闭环极点落入期望的扇形区域,区域分别由给定整数定义张角、正数定义稳定阈,建立的代数Riccati方程组可采用两步法进行迭代求解,自动生成所需要的状态权矩阵,并得到系统的反馈增益,完成闭环极点的区域配置.该算法用于对空间站姿态控制及动量管理的控制系统,结果表明系统稳态及动态特性能够达到预期目标.   相似文献   

6.
对有扰情况下欠驱动航天器三轴姿态保持控制问题进行了研究,提出一种基于俯仰偏置动量轮和滚动轴推力器的姿态保持控制方法。该方法基于偏置动量航天器滚动-俯仰轴耦合的原理实现,避免了欠驱动零动量航天器平衡点附近欠驱动轴耦合弱的问题;将航天器的姿态运动分为长周期运动和短周期运动,用极点配置方法进行控制律设计,给出保证系统稳定的参数选取范围,求出了系统稳态误差。最后,通过数值仿真验证了所设计的控制器不但能快速消除初始姿态偏差,而且能抵抗外干扰将航天器姿态保持在平衡点附近。  相似文献   

7.
为了减小单侧大帆板卫星长时间对日巡航模式下气动力矩和引力梯度力矩所造成的三轴角动量积累,对该卫星进行对日姿态轨迹优化及跟踪控制研究.建立单侧大帆板卫星的动力学模型和运动学模型;利用高斯伪谱法得到使三轴角动量积累最小的期望姿态轨迹;为使卫星在惯量矩阵不确定和未知干扰力矩的影响下能够跟踪期望姿态轨迹,设计了自适应滑模控制律.该控制律利用自适应律对控制增益进行调节,无需事先确定系统不确定性的上界.仿真结果表明:所设计的控制律能够实现卫星的对日姿态跟踪;相比常用的对日基准坐标系,优化得到的姿态轨迹能够明显减少卫星三轴角动量的积累.  相似文献   

8.
在系统总角动量不为零的前提下,仅带两个飞轮的航天器无法实现本体系相对于惯性系三轴姿态角为零的稳定控制,而已实现的角速度稳定控制和自旋稳定控制也无法满足姿态控制任务的多样化需求。于是在系统总角动量不为零时,首次提出存在最大程度姿态稳定形式为航天器本体三轴角速度稳定,同时固连于航天器的某一特定视线轴指向任意给定惯性方向。利用一种新的姿态描述形式推导出了角速度为零时航天器的目标姿态,然后基于线性化后的系统设计了线性二次型最优控制器。数值仿真表明利用此控制器能实现所提出的姿态稳定形式,这对于无须实现本体系相对惯性系三轴姿态角为零,而只需对固连于本体的天线或相机进行惯性空间定向控制的航天器将完全满足其姿态控制要求,同时也能提高欠驱动航天器的可靠性。  相似文献   

9.
正日前,中国航天科技集团公司五院502所成功研制出0.1牛米秒微型控制力矩陀螺(CMG)。这是国内目前角动量最小的CMG产品。该产品本体质量仅有690克,最大输出力矩0.1牛米。其研制成功将使我国具备微纳卫星高敏捷姿态机动能力,可以完成宽范围立体对地观测和卫星在轨重构等任  相似文献   

10.
<正> 一、前言目前单个偏置角动量轮已广泛应用于各种中、高轨道卫星(通信卫星、气象卫星、科学卫星等)的姿控系统中,其中大多数与喷气机构相配合,实现对地三轴稳定的姿态控制。采用这种结构形式的姿控系统,其优点是简单可靠,长寿命,具有一定的控制精度。利用飞轮的控制力矩,可以线性连续地调节卫星的俯仰姿态,这个问题比较简单,本文  相似文献   

11.
当航天器执行高动态敏捷机动或者姿态动态跟踪控制等任务时,常使用控制力矩陀螺(control moment gyroscope,简称CMG)和飞轮(reaction wheel,简称RW)构成的混合执行机构来提供大力矩。提出了基于力矩输出能力最优化的混合执行机构操纵律,从几何角度出发,给出了力矩输出能力最优的CMG框架角速度和RW角加速度,通过引入参数,并讨论参数的设置的最优,使得框架转速误差和输出力矩误差的混合二次型达到最小,保证了混合执行机构在输出力矩误差最小的情况下,力矩输出能力最优。以金字塔构型的CMG集群和正交的RW集群构成的混合执行机构为例,对基于力矩输出能力最优化的混合执行机构操纵律进行合理化分析,证明了引入参数的作用,并且证明了混合执行机构不存在CMG奇异情况。仿真结果表明,基于力矩输出能力最优化的混合执行机构操纵律解决了CMG奇异的问题并使得RW不陷入饱和,输出力矩误差较小,输出力矩能力强,能够应用于航天器大角度机动任务。  相似文献   

12.
针对单滑块滚控式变质心飞行器的欠驱动问题,提出基于自抗扰思想的控制器,利用横向配置单滑块实现指令滚转角跟踪和侧滑角镇定控制。应用质点系动量矩定理建立了系统姿态动力学模型,分析表明,滚转和偏航通道拥有同一控制输入,且存在滑块惯性和运动耦合,滑块横向偏移会影响偏航通道。为此,设计自抗扰控制(ADRC)器进行滚偏耦合控制,将模型误差、滑块耦合和不确定干扰视作总和扰动,对滚转角跟踪子系统和侧滑角镇定子系统同时进行状态观测和总和扰动动态补偿,该控制器能够较好地抵抗系统内外干扰,且结构简单、易于实现。摄动仿真结果验证了所提控制器的有效性和鲁棒性。   相似文献   

13.
微小卫星用微型控制力矩陀螺研究   总被引:1,自引:0,他引:1  
摘要: 随着技术的发展,微小卫星已经成为一种功能强大的航天器.为了进一步拓展微小卫星的应用领域,提升其任务效益,高敏捷机动能力成为了微小卫星发展的重要方向.控制力矩陀螺(CMG)因其具有高转矩能量比和低重量力矩比,将成为实现微小卫星敏捷机动的重要执行机构.介绍一种新型的可应用于微小卫星的微型CMG,其角动量为0.1 N·m·s.经过实验室测试和环境试验,结果表明该型CMG可满足微小卫星的姿态控制需求.  相似文献   

14.
为实现遥感卫星的高精度指向能力,对遥感卫星星上常用执行机构控制力矩陀螺扰动及性能指标评定进行了研究。首先,充分考虑小型控制力矩陀螺的静动不平衡量以及框架轴的安装误差,根据动量定理和动量矩定理建立了完整的星载小型控制力矩陀螺的动力学模型,并对所建立模型的正确性进行了理论分析和仿真验证;其次,将含有扰动特性的小型控制力矩陀螺应用到星上,建立了整星动力学模型,并选用合适的框架伺服控制系统和转子伺服控制系统,完成整星的姿态稳定控制任务;最后,采用数值仿真的方式分析了陀螺转子静动不平衡因素以及框架角测量误差对星体姿态精度和稳定度带来的影响。结合任务要求,对小型控制力矩陀螺设计提出静动不平衡量等指标要求,以期使其满足星上光学有效载荷的成像要求。  相似文献   

15.
偏置动量卫星姿态控制过程中会产生章动运动。若星体俯仰轴与其它轴存在固定的惯量积,则可以利用偏置动量轮有效地克服章动。针对转动惯量周期性变化的偏置动量卫星,提出一种通过在动量轮的控制律中引入时变的滚动轴信息,利用动量轮克服滚动轴/偏航轴章动影响的方法。通过数学仿真验证了该算法的有效性。  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号