共查询到20条相似文献,搜索用时 15 毫秒
1.
Accretion onto black holes powers most luminous compact sources in the Universe. Black holes are found with masses extending over an extraordinary broad dynamic range, from several to a few billion times the mass of the Sun. Depending on their position on the mass scale, they may manifest themselves as X-ray binaries or active galactic nuclei. X-ray binaries harbor stellar mass black holes—endpoints of the evolution of massive stars. They have been studied by X-ray astronomy since its inception in the early 60-ies, however, the enigma of the most luminous of them—ultra-luminous X-ray sources, still remains unsolved. Supermassive black holes, lurking at the centers of galaxies, are up to hundreds of millions times more massive and give rise to the wide variety of different phenomena collectively termed “Active Galactic Nuclei”. The most luminous of them reach the Eddington luminosity limit for a few billions solar masses object and are found at redshifts as high as z≥5–7. Accretion onto supermassive black holes in AGN and stellar- and (possibly) intermediate mass black holes in X-ray binaries and ultra-luminous X-ray sources in star-forming galaxies can explain most, if not all, of the observed brightness of the cosmic X-ray background radiation. Despite the vast difference in the mass scale, accretion in X-ray binaries and AGN is governed by the same physical laws, so a degree of quantitative analogy among them is expected. Indeed, all luminous black holes are successfully described by the standard Shakura-Sunyaev theory of accretion disks, while the output of low-luminosity accreting black holes in the form of mechanical and radiative power of the associated jets obeys to a unified scaling relation, termed as the “fundamental plane of black holes”. From that standpoint, in this review we discuss formation of radiation in X-ray binaries and AGN, emphasizing their main similarities and differences, and examine our current knowledge of the demographics of stellar mass and supermassive black holes. 相似文献
2.
Multiwavelength variability data, combined with spectral-timing analysis techniques, provides information about the causal relationship between different physical components in accreting black holes. Using fast-timing data and long-term monitoring, we can probe the behaviour of the same components across the black hole mass scale. In this chapter we review the observational status of multiwavelength variability in accreting black holes, from black hole X-ray binaries to AGN, and consider the implications for models of accretion and ejection, primarily considering the evidence for accretion disc and jet variability in these systems. We end with a consideration of future prospects in this quickly-developing field. 相似文献
3.
Vytenis M. Vasyliūnas 《Space Science Reviews》2011,158(1):91-118
Many widely used methods for describing and understanding the magnetosphere are based on balance conditions for quasi-static equilibrium (this is particularly true of the classical theory of magnetosphere/ionosphere coupling, which in addition presupposes the equilibrium to be stable); they may therefore be of limited applicability for dealing with time-variable phenomena as well as for determining cause-effect relations. The large-scale variability of the magnetosphere can be produced both by changing external (solar-wind) conditions and by non-equilibrium internal dynamics. Its developments are governed by the basic equations of physics, especially Maxwell’s equations combined with the unique constraints of large-scale plasma; the requirement of charge quasi-neutrality constrains the electric field to be determined by plasma dynamics (generalized Ohm’s law) and the electric current to match the existing curl of the magnetic field. The structure and dynamics of the ionosphere/magnetosphere/solar-wind system can then be described in terms of three interrelated processes: (1) stress equilibrium and disequilibrium, (2) magnetic flux transport, (3) energy conversion and dissipation. This provides a framework for a unified formulation of settled as well as of controversial issues concerning, e.g., magnetospheric substorms and magnetic storms. 相似文献
4.
T. H. Zurbuchen S. Hefti L. A. Fisk G. Gloeckler R. Von Steiger 《Space Science Reviews》1999,87(1-2):353-356
The transition between coronal hole associated fast solar wind and slow solar wind is studied using data from the high resolution
mass spectrometer SWICS on ACE. We discuss the data in the framework of a recent theory about the global heliospheric magnetic
field and conclude that the data are consistent with magnetic connections between field-lines in the fast and in the slow
wind.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
5.
Silvia Martínez-Núñez Peter Kretschmar Enrico Bozzo Lidia M. Oskinova Joachim Puls Lara Sidoli Jon Olof Sundqvist Pere Blay Maurizio Falanga Felix Fürst Angel Gímenez-García Ingo Kreykenbohm Matthias Kühnel Andreas Sander José Miguel Torrejón Jörn Wilms 《Space Science Reviews》2017,212(1-2):59-150
Massive stars, at least \(\sim10\) times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy.In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense “clumps”. The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution.Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations.This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems. 相似文献
6.
Nonthermal magnetospheric radio emissions provide the radio signatures of solar-terrestrial connection and may be used for
space weather forecasting. A three-wave model of auroral radio emissions at the fundamental plasma frequency was proposed
by Chian et al. (1994) involving resonant interactions of Langmuir, whistler and Alfvén waves. Chaos can appear in the nonlinear evolution
of this three-wave process in the magnetosphere. We discuss two types of intermittency in radio signals driven by temporal
chaos: the type-I Pomeau-Manneville intermittency and the interior crisis-induced intermittency. Examples of time series for
both types of intermittency are presented.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
7.
邓颖 《中国民航学院学报》2001,19(2):30-32
通过与有形物品相比较,剖析了服务的不可分割性、多变性、不可贮存性三个特征,讨论了由这些特征引发的问题及其解决方案,指出企业庆重视营销和服务的策略。 相似文献
8.
A method for processing Doppler signals is proposed. The basic idea is to process the signal trace obtained by a transient recorder not numerically, but optically, storing it as an image in a spatial light modulator and obtaining the Fourier transform with the speed of light by the use of coherent laser light. Due to the finite resolution of the transient recorder and the light modulator, the image consists of rows of equally spaced bars. As a result of the Fourier transformation equally spaced dots are obtained. The distance between corresponding dots is proportional to the Doppler frequency to be determined. An experimental setup for testing this new principle is described. Simulated as well as real Doppler bursts are treated. The method is found to be a powerful tool for Doppler burst processing, especially when the signal-to-noise ratio is very poor. The use of a simple algorithm for frequency detection increases the confidence in correct data collection 相似文献
9.
提及中东地区的航空公司,卡塔尔航空绝对是不得不说的一家。卡航之所以能在短短几年中迅速崛起,有国家经济快速发展的因素,有政府支持的因素,自然也是航空公司力争上游的结果。 相似文献
10.
The dynamics of dust particles in the solar system is dominated by solar gravity, by solar radiation pressure, or by electromagnetic interaction of charged dust grains with the interplanetary magnetic field. For micron-sized or bigger dust particles solar gravity leads to speeds of about 30 to 40 km s–1 at the Earths distance. Smaller particles that are generated close to the Sun and for which radiation pressure is dominant (the ratio of radiation pressure force over gravity F
rad/F
grav is generally termed ) are driven out of the solar system on hyperbolic orbits. Such a flow of -meteoroids has been observed by the Pioneer 8, 9 and Ulysses spaceprobes. Dust particles in interplanetary space are electrically charged to typically +5 V by the photo effect from solar UV radiation. The dust detector on Cassini for the first time measured the dust charge directly. The dynamics of dust particles smaller than about 0.1 m is dominated by the electromagnetic interaction with the ambient magnetic field. Effects of the solar wind magnetic field on interstellar grains passing through the solar system have been observed. Nanometer sized dust stream particles have been found which were accelerated by Jupiters magnetic field to speeds of about 300 km s–1. 相似文献
11.
Indices of solar activity relevant for understanding and modelling solar irradiance variability are identified, and their temporal characteristics compared. Reproducing observed solar irradiance variability requires a minimum of two different types of indices — an index for irradiance depletion by sunspots and an index for global irradiance enhancement by faculae and network. When combined with appropriate wavelength-dependent parameterizations of sunspot and facular contrasts and center-to-limb functions, these indices permit the construction of empirical models of daily, monthly and annual solar total and spectral irradiances. The models are compared with observations at selected wavelengths and for the total irradiance. While the models replicate much of the rotational and 11-year cycle variance in contemporary irradiance databases, differences exist because of either the presence of variability mechanisms additional to solar magnetism, or of unresolved instrumental effects in the databases. The reconstruction of solar irradiance in the past requires speculation about the extent of intercycle fluctuations in the global facular index, or in other, as yet unspecified, variability mechanisms. 相似文献
12.
The global variability of the Sun of relevance for planetary climates has been directly measured for the past few decades. For longer stretches of time models are required. Semi-empirical models can now accurately reproduce the measured records of solar total and spectral irradiance, as well as of the magnetic flux. They can also provide reconstructions of these quantities on longer time scales. Here a summary is given of some of the modelling efforts and of the results achieved so far. 相似文献
13.
J.-L Bertaux 《Space Science Reviews》2006,125(1-4):435-444
Some possible factors of climate changes and of long term climate evolution are discussed with regard of the three terrestrial planets, Earth, Venus and Mars. Two positive feedback mechanisms involving liquid water, i.e., the albedo mechanism and the greenhouse effect of water vapour, are described. These feedback mechanisms respond to small external forcings, such as resulting from solar or astronomical constants variability, which might thus result in large influences on climatic changes on Earth. On Venus, reactions of the atmosphere with surface minerals play an important role in the climate system, but the involved time scales are much larger. On Mars, climate is changing through variations of the polar axis inclination over time scales of ~105–106 years. Growing evidence also exists that a major climatic change happened on Mars some 3.5 to 3.8 Gigayears ago, leading to the disappearance of liquid water on the planet surface by eliminating most of the CO2 atmosphere greenhouse power. This change might be due to a large surge of the solar wind, or to atmospheric erosion by large bodies impacts. Indeed, except for their thermospheric temperature response, there is currently little evidence for an effect of long-term solar variability on the climate of Venus and Mars. This fact is possibly due to the absence of liquid water on these terrestrial planets. 相似文献
14.
An experimental Fairchild CCD-211 was placed in the 2. 1-m coudé spectrograph at the Kitt Peak National Observatory and used to record an 87 Å spectral band centered on Ha. On the night of 1979 July 11 UT date, this system was used to observe continuously the extreme Cephei variable BW Vulpeculae throughout one of its 4h 49m cycles with an average exposure of 13 minutes per observation. A total of 18 observations was secured. The results show dramatic profile variations of H, including features not previously reported, and extreme variations of the C II 6578, 6582 lines, including variations of equivalent width. The fast time-resolution capability and the photometric linearity of the CCD have permitted the detection of subtle effects that have been missed by photographic observations and has led directly to important new interpretations of the complex atmospheric pulsations in this star, including effects of altered opacity on the formation of spectral lines and the suggestion of a helium-ionization heat engine as a mechanism for driving atmospheric pulsations.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. 相似文献
15.
A technique for quickly searching frequencies in a signal path to find and measure low-level spurs is described. It couples a wideband tuned receiver with a tuned digital, parallel filter bank analyzer to greatly reduce spur testing times. The receiver is step-tuned across the region of frequencies to be searched, and at each step the filter bank is step-tuned across the IF output. An example system is described, and search time and sensitivity are discussed 相似文献
16.
<正>危机,什么危机?即使全球的同行由于经济下滑而遭受巨额损失,中国的航空维修企业的管理者们仍然会发出这样的疑问。这种状况屡见不鲜了,一直延续到2009年年中。从去年夏天,这些管理者们 相似文献
17.
C. De Jager 《Space Science Reviews》2005,120(3-4):197-241
18.
Xing Li 《Space Science Reviews》1999,87(1-2):253-256
A 16-moment fast solar wind model based on a bi-Maxwellian velocity distribution is presented. Although the proton heat flux density is found to be significantly smaller than the classical Spitzer-Härm value, it still plays a significant role in shaping the proton temperature anisotropy in the fast solar wind. 相似文献
19.
20.
This paper focuses on the design of a super fast battery charger based on National's proprietary neural network based NeuFuz technology. In this application, we have used a NiCd battery pack as the test vehicle. However, this technology can be extended to other chemistries such as Ni-MH, Li-ion, etc. This technology allows the designer to accurately model the charge controller using a neural network, based on battery charge characteristics provided by the manufacturer. This approach continuously monitors the battery status, and modifies the charge current accordingly. It also eliminates the need for standard charge termination methods used in today's conventional chargers. The result is super fast charging in 20 to 30 minutes, and increased battery life. A low cost embedded controller (COP8) performs all the fuel-gauging and charge control functions by processing data obtained from the battery circuitry 相似文献