首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imaging interplanetary CMEs at radio frequency from solar polar orbit   总被引:1,自引:0,他引:1  
Coronal mass ejections (CMEs) represent a great concentration of mass and energy input into the lower corona. They have come to be recognized as the major driver of physical conditions change in the Sun–Earth system. Consequently, observations of CMEs are important for understanding and ultimately predicting space weather conditions. This paper discusses a proposed mission, the Solar Polar Orbit Radio Telescope (SPORT) mission, which will observe the propagation of interplanetary CMEs to distances of near 0.35 AU from the Sun. The orbit of SPORT is an elliptical solar polar orbit. The inclination angle between the orbit and ecliptic plane should be about 90°. The main payload on board SPORT will be an imaging radiometer working at the meter wavelength band (radio telescope), which can follow the propagation of interplanetary CMEs. The images that are obtained by the radio telescope embody the brightness temperature of the objectives. Due to the very large size required for the antenna aperture of the radio telescope, we adopt interferometric imaging technology to reduce it. Interferometric imaging technology is based on indirect spatial frequency domain measurements plus Fourier transformation. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind ion instrument, an energetic particle detector, a magnetometer, a wave detector and a solar radio burst spectrometer.  相似文献   

2.
Solar-B     
Following the successful Yohkoh satellite which is continuously operating since August 1991, the solar physics community in Japan is now preparing for a Japan's next solar physics mission, Solar-B, whose primary objective is to study the connection of the dynamics and heating in the solar corona with the magnetic field at the solar surface. Solar-B will carry a medium-sized optical telescope with capability of measuring vector magnetic fields at the solar surface, together with two X-ray/EUV imaging telescopes capable of measuring the dynamics and physical conditions of hot plasma in the solar corona. These telescopes are prepared under the international collaborations with U.S.A. (NASA) and U.K. (PPARC). ISAS schedules to launch Solar-B as its 22nd science satellite in summer 2005. The Solar-B program is now in the proto-model manifacture/test phase and the baseline design of the satellite as well as the three telescopes is defined.  相似文献   

3.
The past two decades have witnessed a renewed interest in low frequency radio astronomy, with a particular focus on frequencies above 30 MHz e.g., LOFAR (LOw Frequency ARray) in the Netherlands and its European extension ILT, the International LOFAR Telescope. However, at frequencies below 30 MHz, Earth-based observations are limited due to a combination of severe ionospheric distortions, almost full reflection of radio waves below 10 MHz, solar eruptions and the radio frequency interference (RFI) of human-made signals. Moreover, there are interesting scientific processes which naturally occur at these low frequencies. A space or Lunar-based ultra-low-frequency (also referred to as ultra-long-wavelength, ULW) radio array would suffer significantly less from these limitations and hence would open up the last, virtually unexplored frequency domain in the electromagnetic spectrum.A roadmap has been initiated by astronomers and researchers in the Netherlands to explore the opportunity of building a swarm of satellites to observe at the frequency band below 30 MHz. This roadmap dubbed Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR), a space-based ultra-low frequency radio telescope that will explore the Universe’s so-called dark ages, map the interstellar medium, and study planetary and solar bursts in the solar system and search them in other planetary systems. Such a radio astronomy system will comprise of a swarm of hundreds to thousands of satellites, working together as a single aperture synthesis instrument deployed sufficiently far away from Earth to avoid terrestrial RFI. The OLFAR telescope is a novel and complex system, requiring yet to be proven engineering solutions. Therefore, a number of key technologies are still required to be developed and proven. The first step in this roadmap is the NCLE (Netherlands China Low Frequency Explorer) experiment, which was launched in May 2018 on the Chinese Chang’e 4 mission. The NCLE payload consists of a three monopole antenna system for low frequency observations, from which the first data stream is expected in the second half of 2019, which will provide important feedback for future science and technology opportunities.In this paper, the roadmap towards OLFAR, a brief overview of the science opportunities, and the technological and programmatic challenges of the mission are presented.  相似文献   

4.
The Square Kilometre Array (SKA) will be the largest radio telescope ever built, aiming to provide collecting area larger than 1?km2. The SKA will have two independent instruments, SKA-LOW comprising of dipoles organized as aperture arrays in Australia and SKA-MID comprising of dishes in South Africa. Currently the phase-1 of SKA, referred to as SKA1, is in its late design stage and construction is expected to start in 2020. Both SKA1-LOW (frequency range of 50–350?MHz) and SKA1-MID Bands 1, 2, and 5 (frequency ranges of 350–1050, 950–1760, and 4600–15,300?MHz, respectively) are important for solar observations. In this paper we present SKA’s unique capabilities in terms of spatial, spectral, and temporal resolution, as well as sensitivity and show that they have the potential to provide major new insights in solar physics topics of capital importance including (i) the structure and evolution of the solar corona, (ii) coronal heating, (iii) solar flare dynamics including particle acceleration and transport, (iv) the dynamics and structure of coronal mass ejections, and (v) the solar aspects of space weather. Observations of the Sun jointly with the new generation of ground-based and space-borne instruments promise unprecedented discoveries.  相似文献   

5.
A space-based Very Long Baseline Interferometry (VLBI) program, named as the Cosmic Microscope, is proposed to involve dual VLBI telescopes in the space working together with giant ground-based telescopes (e.g., Square Kilometre Array, FAST, Arecibo) to image the low radio frequency Universe with the purpose of unraveling the compact structure of cosmic constituents including supermassive black holes and binaries, pulsars, astronomical masers and the underlying source, and exoplanets amongst others. The operational frequency bands are 30, 74, 330 and 1670 MHz, supporting broad science areas. The mission plans to launch two 30-m-diameter radio telescopes into 2 000 km×90 000 km elliptical orbits. The two telescopes can work in flexibly diverse modes. (i) Space-ground VLBI. The maximum space-ground baseline length is about 100 000 km; it provides a high-dynamic-range imaging capacity with unprecedented high resolutions at low frequencies (0.3 mas at 1.67 GHz and 20 mas at 30 MHz) enabling studies of exoplanets and supermassive black hole binaries (which emit nanoHz gravitational waves). (ii) Space-space single-baseline VLBI. This unique baseline enables the detection of flaring hydroxyl masers, and more precise position measurement of pulsars and radio transients at mas level. (iii) Single dish mode, where each telescope can be used to monitor transient bursts and rapidly trigger follow-up VLBI observations. The large space telescope will also contribute in measuring and constraining the total angular power spectrum from the Epoch of Reionization. In short, the Cosmic Microscope offers astronomers the opportunity to conduct novel, frontier science.   相似文献   

6.
天基X射线掠入射式成像望远镜发展现状   总被引:1,自引:1,他引:1  
阐述了太阳X射线成像观测在空间天气预报中的地位和作用,叙述了掠入射式X射线聚焦成像的基本原理,简要介绍了在轨成功运行的天体X射线成像望远镜和太阳X射线成像望远镜的基本设计和技术指标,并介绍了国内正开发研制的专门服务于空间天气预报的太阳X射线成像望远镜基本设计和主要特点.  相似文献   

7.
在极紫外波段对太阳进行成像观测是研究太阳活动、日冕中等离子体物理特性的重要手段.传统极紫外成像仪或光谱仪无法同时实现高光谱分辨率和大视场的太阳成像.本文设计了一种新型太阳极紫外多谱段成像系统,采用无狭缝光栅分光方式实现了高光谱分辨率和空间分辨率的全日面成像,成像视场可达47',光谱分辨率每像素2×10-3 nm,空间分辨率每像素1.4',全日面时间分辨率优于60s.通过分析谱线的全日面成像图和系统响应,表明成像仪能大范围的观测太阳活动形态演化,为太阳物理研究和空间天气预报提供更完整的观测数据.   相似文献   

8.
The European Solar Telescope (EST) is a project of a new-generation solar telescope. It has a large aperture of 4?m, which is necessary for achieving high spatial and temporal resolution. The high polarimetric sensitivity of the EST will allow to measure the magnetic field in the solar atmosphere with unprecedented precision. Here, we summarise the recent advancements in the realisation of the EST project regarding the hardware development and the refinement of the science requirements.  相似文献   

9.
为使射电天文望远镜的视场得到扩大,分析望远镜的视场时对天线的反射面提出共形网格剖分法,对物理光学法的常规计算方法进行了改进,使计算精度得到提高,且剖分网格少.采用改进的算法计算了WSRT望远镜的焦面场,并根据计算结果设计了WSRT望远镜的致密焦面阵结构;用共轭匹配法对阵列单元加权、计算相应的远场方向图,并与采用单个馈源时的远场方向图作比较.结果表明采用致密焦面阵能扩大视场并保证视场连续,增益也得到提高.   相似文献   

10.
We present the technical characteristics of a low-cost radio telescope for solar/non solar observations at decimetric (1200–1700 MHz) and centimetric (2700 and 5000 MHz) wavelengths known as Brazilian Decimetric Array (BDA). The technical specifications of the antenna, tracking system, log-periodic feed, preamplifier and the frequency-synthesised receiver with a Single Side Band (SSB) video output of 2.5 MHz are given.  相似文献   

11.
A crucial part of a space mission for very-long baseline interferometery (VLBI), which is the technique capable of providing the highest resolution images in astronomy, is orbit determination of the mission’s space radio telescope(s). In order to successfully detect interference fringes that result from correlation of the signals recorded by a ground-based and a space-borne radio telescope, the propagation delays experienced in the near-Earth space by radio waves emitted by the source and the relativity effects on each telescope’s clock need to be evaluated, which requires accurate knowledge of position and velocity of the space radio telescope. In this paper we describe our approach to orbit determination (OD) of the RadioAstron spacecraft of the RadioAstron space-VLBI mission. Determining RadioAstron’s orbit is complicated due to several factors: strong solar radiation pressure, a highly eccentric orbit, and frequent orbit perturbations caused by the attitude control system. We show that in order to maintain the OD accuracy required for processing space-VLBI observations at cm-wavelengths it is required to take into account the additional data on thruster firings, reaction wheel rotation rates, and attitude of the spacecraft. We also investigate into using the unique orbit data available only for a space-VLBI spacecraft, i.e. the residual delays and delay rates that result from VLBI data processing, as a means to evaluate the achieved OD accuracy. We present the results of the first experience of OD accuracy evaluation of this kind, using more than 5000 residual values obtained as a result of space-VLBI observations performed over 7 years of the RadioAstron mission operations.  相似文献   

12.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German Project to develop and operate a gyrostabilized 2.5-m telescope in a Boeing 747-SP. This observatory will allow astronomical observations from 0.3 μm to sub-millimeter wavelengths at stratospheric altitudes as high as 45,000 ft where the atmosphere is not only cloud-free, but largely transparent at infrared wavelengths. The dynamics and chemistry of interstellar matter, and the details of embedded star formation will be key science goals. In addition, SOFIA’s unique portability will enable large-telescope observations at sites required to observe transient phenomena and location specific events. SOFIA will offer the convenient accessibility of a ground-based telescope for servicing, maintenance, and regular technology upgrades, yet will also have many of the performance advantages of a space-based telescope. Initially, SOFIA will fly with nine first-generation focal plane instruments that include broad-band imagers, moderate resolution spectrographs that will resolve broad features from dust and large molecules, and high resolution spectrometers capable of studying the chemistry and detailed kinematics of molecular and atomic gas. First science flights will begin in 2010, leading to a full operations schedule of about 120 8–10 h flights per year by 2014. The next call for instrument development that can respond to scientifically exciting new technologies will be issued in 2010. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community with cutting edge focal plane technology. We summarize the operational characteristics of the first-generation instruments and give specific examples of the types of fundamental scientific studies these instruments are expected to make.  相似文献   

13.
Significant progress has been made by Chinese scientists in research of interplanetary physics during the recent two years (2018-2020). These achievements are reflected at least in the following aspects:Activities in solar corona and lower solar atmosphere; solar wind and turbulence; filament/prominence, jets, flares, and radio bursts; active regions and solar eruptions; coronal mass ejections and their interplanetary counterparts; other interplanetary structures; space weather prediction methods; magnetic reconnection; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles, cosmic rays, and Forbush decreases; machine learning methods in space weather and other aspects. More than one hundred and forty papers in the academic journals have been published in these research directions. These fruitful achievements are obtained by Chinese scholars in solar physics and space physics either independently or through international collaborations. They greatly improve people's understanding of solar activities, solar eruptions, the corresponding space weather effects, and the Sun-Earth relations. Here we will give a very brief review on the research progress. However, it must be pointed out that this paper may not completely cover all achievements in this field due to our limited knowledge.   相似文献   

14.
Great progress has been made in the research of solar corona and interplanetary physics by the Chinese scientists during the past two years (2014-2016). Nearly 100 papers were published in this area. In this report, we will give a brief review to these progresses. The investigations include:solar corona, solar wind and turbulence, superhalo electron and energetic particle in the inner heliosphere, solar flares and radio bursts, Coronal Mass Ejections (CMEs) and their interplanetary counterparts, Magnetohydrodynamic (MHD) numerical modeling, CME/shock arrival time prediction, magnetic reconnection, solar variability and its impact on climate. These achievements help us to better understand the evolution of solar activities, solar eruptions, their propagations in the heliosphere, and potential geoeffectiveness. They were achieved by the Chinese solar and space scientists independently or via international collaborations.   相似文献   

15.
太阳X-EUV成像望远镜主要用来监测和预报影响空间天气变化的太阳活动,成像资料专门服务于空间天气预报研究.为了满足望远镜的空间适应性,望远镜获取的图像会受到其结构调制形成的噪声干扰.本文主要对望远镜所获取的图像进行优化处理,讨论了傅里叶变换的物理意义及其在图像处理中的应用.通过二维离散傅里叶变换,将图像变换到频率域空间;选用巴特沃思陷波滤波器滤波,通过程序设计,实际调试,在尽量减少图像失真的前提下,滤除图像中的周期性噪声.优化后的图像有利于进一步分析太阳活动现象.   相似文献   

16.
During the past two years (2016-2018), great achievements have been made in the Chinese research of interplanetary physics, with nearly 100 papers published in the academic journals. The achievements are including but not limited to the following topics:solar corona; solar wind and turbulence; filament/prominence and jets; solar flare; radio bursts; particle acceleration at coronal shocks; magnetic flux ropes; instability; instrument; Coronal Mass Ejections (CMEs) and their interplanetary counterparts; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles and cosmic rays. The progress further improves our understanding of the eruptions of solar activities, their evolutions and propagations in the heliosphere, and final geoeffects on our Earth. These results were achieved by the Chinese solar and space scientists independently or via international collaborations. This paper will give a brief review of these achievements.   相似文献   

17.
利用综合孔径射电望远镜对太阳进行观测时,通过对图像中存在的明亮扩展源进行准确建模并移除,可以更好地观测视场内的微弱源并提高图像的动态范围。在射电天文领域,主要利用CLEAN算法对图像中的明亮源进行移除,以显示微弱的背景。然而,使用图像像素作为基函数的CLEAN算法的固有限制导致其对扩展源的建模效果较差。为了克服这种限制,将基于长椭球面波函数(Prolate Spheroidal Wave Functions,PSWF)的去卷积方法应用于太阳射电成像。PSWF最优正交基由脏图中的感兴趣区域(Region of Interest,ROI)和UV覆盖共同决定。为了验证该方法的有效性,基于PSWF正交基对均匀圆环阵观测的太阳射电图像进行去卷积,并从动态范围和保真度两个方面定量化对比了CLEAN算法和基于PSWF正交基方法的性能。基于PSWF正交基去卷积方法剩余脏图中的微弱源更接近真实情况且动态范围更高。  相似文献   

18.
The solar physics studies in China during 2004-2006 from solar interior to solar atmospheres and solar-interplanetary space are summarized. These researches are arranged under the topics of solar interior, photosphere, chromosphere and transition region, corona, flares and CMEs (and the associated radio bursts, X-ray/γ-ray bursts and particle acceleration), solar wind, solar cycle, and ground-based instrumentation.  相似文献   

19.
The solar wind is a high Reynolds’ number plasma flow of solar origin that permeates the whole heliosphere. It is also the only accessible medium in which to study collisionless magnetohydrodynamic turbulence performing direct measurements. This represents a topic of fundamental importance to both plasma physics and astrophysics. During the past decades, in situ observations on the ecliptic and at high heliographic latitudes have been very valuable to shed some light on the intricate nature of space plasma turbulence. In this brief review, we will mainly describe the evolution experienced by the turbulence as the solar wind expands into the interplanetary space. We will also address implications due to different processes of local generation of turbulence which might be at work on the ecliptic and at high latitude. Moreover, the fact that solar wind fluctuations are not isotropic and poorly single scale-invariant, two of the fundamental hypotheses at the basis of Kolmogorov’s theory (K41), will give us the possibility to discuss also the relevance of intermittency in the study of space plasma turbulence.  相似文献   

20.
空间物理学是人类进入空间时代后迅速发展起来的一门新兴的多学科交叉的前沿基础学科。其将太阳和太阳风控制的日球层空间作为一个系统,研究太阳/太阳风与行星/彗星的上层大气、电离层、磁层乃至星际介质之间的相互作用。空间物理学从本质上讲是一门实验科学,空间物理探测是空间物理学发展的基础。进入新世纪,随着空间基础设施和人类高技术活动的日益频繁,空间物理学进入新的发展阶段,强调科学与应用的密切结合。近年来,空间物理学取得了一系列重要进展。本文对接国家自然科学基金委地球科学部“宜居地球-地球系统科学”的顶层战略设计,梳理总结近年来空间物理各学科发展动态和趋势,凝练中国空间物理学未来发展的重点领域,优化学科布局,推进空间物理各学科的高质量发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号