首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
机翼掠角对前掠翼布局气动性能影响的流动机理   总被引:1,自引:0,他引:1  
采用N-S方程和SST模型数值模拟方法,对比了前掠翼和后掠翼飞机气动性能的差异,对不同前掠角前掠翼布局的飞机纵向气动性能进行了比较,分析了其流动特性,总结了前掠角对前掠翼布局气动性能的影响.研究结果表明,前掠翼与后掠翼气动性能差异的根源是展向速度的不同;小迎角(α<16°)时,前掠角较小的模型气动效率较高,升力系数和升阻比也较大;大迎角(α>16°)时,随着前掠角的增大,前缘涡和侧缘涡增强,对翼面流动产生有利控制,因而前掠角大的模型升力系数较大.该研究可为前掠翼布局的设计提供理论依据.  相似文献   

2.
为了综合发挥前掠翼和串置翼的气动力优势,提出一种串置高速前掠翼身组合基本模型,分别施加细边条和小填块以研究翼根整流影响。采用雷诺时均法和SST k-ω模型,对模型亚跨声速粘性流场进行数值仿真,分析纵向气动力特性和整流机理。结果表明:在来流马赫数0.8和迎角-5°~45°条件下,因前后翼气流相互作用,基本模型前翼升力系数大于后翼升力系数;前后翼翼根前同时加装小填块后,大迎角下模型翼根区域流动有所改善,但升阻特性变化不明显;加装边条后,翼根区域流动改善明显,迎角45°时模型最大升力系数提高了5.26%。  相似文献   

3.
鸭翼-前掠翼气动布局纵向气动特性实验研究   总被引:6,自引:0,他引:6  
前掠翼布局由于其潜在的优势,在未来战斗机的研制中将占有日益重要的地位.本实验通过可变前掠翼和鸭式前翼布局的风洞测力实验,重点分析比较了平板机翼在不同掠角下的纵向气动性能以及鸭翼的影响.实验结果表明,前掠翼在大迎角时能有效提高模型的升力系数,小迎角时其升阻比也略优于后掠翼.前掠翼布局能有效推迟失速,具有良好的失速特性;前掠角较大时,升力系数曲线在失速迎角附近有一个升力系数的"平台",该布局具有"缓失速"特性.距离主机翼较远的鸭式前翼(模型M2)在主机翼前掠和后掠情况下,均可改善整体布局的失速特性,增大失速迎角,增强前掠翼布局缓失速的特点.近距耦合鸭翼(模型M3)显著提高了模型在大迎角下的升力系数.另外,主翼前掠和鸭式前翼布局飞行器具有较好的机动性.  相似文献   

4.
针对弹性变形对前掠翼气动特性的影响,基于改进的CFD/CSD松耦合静气动弹性数值计算方法,在高亚声速条件下,对前掠角χ=10°,20°,30°的前掠翼纵向气动特性和副翼操纵效率进行了计算和分析。结果表明,迎角较小时,弹性翼的升力、升阻比和俯仰力矩较刚性翼大,大迎角时恰恰相反;随着前掠角的增加,机翼的弯扭变形和气动参数变化的程度愈加剧烈;在最大升阻比、迎角α=4°、副翼偏转角δ=20°时,弹性翼的副翼操纵效率略大于刚性翼。该研究可为前掠翼布局的设计提供借鉴。  相似文献   

5.
王旭  张冬  王龙 《飞行力学》2020,(2):17-22
基于NACA0012对称翼型设计了前掠机翼、后掠机翼和平直机翼,采用CFD方法计算了3种机翼的升力系数、阻力系数和俯仰力矩系数,通过压力云图和流线图分析了3种机翼的气动特性及流动机理。研究结果表明:前掠机翼上表面的流动是由翼尖流向翼根,翼根首先出现分离,而后掠机翼上表面的流动是由翼根流向翼尖,翼尖首先出现分离,平直机翼由于受翼尖涡的下洗影响,翼根首先出现分离;在30°斜掠角下,前掠机翼形成了机翼前缘涡,表现出旋涡流态气动特性。研究结果揭示了不同机翼之间的流动差异,有助于在飞行器设计过程中选择合适的气动布局。  相似文献   

6.
本文依据低速风洞实验、载荷分布计算和跨超音速面积律计算,分析了前掠翼布局飞机的气动特性,提出了提高前掠翼气动特性的措施,并用对称性原理解决面涡法和面积律计算方法对前掠翼布局的应用。实验研究和计算表明:前掠翼布局有较好的气动特性,翼梢小翼可提高前掠翼的升力及升阻比。近距耦合的鸭翼及前掠翼翼根填块对改善前掠翼根的气流分离有显著效果。前掠冀比后掠翼更接近最佳载荷分布。有鸭翼的前掠翼组合体的轴向截面分布较易接近最佳当量截面分布,因而可显著减小零升波阻。  相似文献   

7.
基于前后掠鸭式布局的简化模型,通过求解雷诺平均N-S方程,模拟了前后掠鸭式布局的绕流结构,得到了不同布局下鸭翼的升力系数曲线.通过空间流线图,分析了单独鸭翼漩涡的发展特点,以及不同布局中鸭翼涡与机翼前缘涡的干扰机理.结果表明:在后掠翼鸭式布局中,鸭翼涡在大迎角时受到机翼前缘涡的有利干扰,增大了鸭翼的升力系数,提高了失速迎角;在前掠翼鸭式布局中,鸭翼的最大升力系数有所提高,失速迎角基本保持不变.  相似文献   

8.
前掠翼布局中鸭翼气动影响的数值模拟   总被引:1,自引:1,他引:1  
任智静  王旭  刘文法 《航空学报》2010,31(7):1318-1323
 采用三维Navier-Stokes方程和剪切应力输运(SST)湍流模型,就鸭翼不同位置和形状对前掠翼鸭式布局气动性能的影响进行数值模拟,并针对风洞试验方法难于分部件研究机翼、鸭翼以及机身各自气动特性的缺点,对布局升阻特性按部件分解研究并分析流动机理。研究结果表明:前掠翼鸭式布局气动性能(特别是在大迎角情况下)与鸭翼位置及其形状紧密相关,高位近距后掠式鸭翼可以与机翼产生更为有利的相互干扰,与无鸭翼布局相比最大升力系数提高约28.3%,最大升阻比提高约15.4%,大大地提高了前掠翼布局的纵向气动性能。该研究结果可为先进前掠翼布局飞机的预研和发展提供一定的理论参考。  相似文献   

9.
纳秒脉冲等离子体激励控制小后掠三角翼低速绕流试验   总被引:3,自引:1,他引:2  
为探索纳秒脉冲介质阻挡放电(NS DBD)对小后掠尖前缘三角翼的流动控制效果和作用机理,进行NS DBD用于改善其气动特性的测力试验和流动显示试验。当来流速度分别为30m/s和45m/s时,测力试验结果表明位于机翼前缘的NS DBD能很好地改善三角翼大迎角气动特性,其中来流速度为45m/s时最大升力系数提高了18.3%;研究了脉冲激励频率对流动控制效果的影响规律,最佳的无量纲激励频率F+≈1~2。在来流速度为20m/s时,采用粒子图像测速仪(PIV)研究了不同迎角下激励前后机翼背风面流场,表明NS DBD可改善上翼面旋涡结构,使分离涡附体并得到加强。基于试验结果,认为NS DBD进行三角翼前缘涡控制的机理是激励诱导分离剪切层周期性产生附体的分离涡,从而维持了上翼面大迎角时的涡升力。  相似文献   

10.
一种新的变前掠翼无人机气动布局   总被引:3,自引:1,他引:3  
刘文法  王旭  米康 《航空学报》2009,30(5):832-836
研究了一种新的变前掠翼无人机气动布局概念,在低、亚、跨和超声速状态下可通过改变机翼的前掠角来获取最佳的气动性能。根据设计指标和翼身融合技术初步设计了其几何外形,并采用三维Navier-Stokes方程数值模拟和对比分析了5种不同任务构型的气动特性。结果表明:①在Ma=0.6巡航时,平直翼加挂副油箱构型最大升阻比为14.55,而三角翼构型仅为8.29;②在Ma=0.4机动时,45°前掠翼构型失速迎角达到38°且具有最大的升力系数2.455,较平直翼构型提高了4.9%;③在Ma=1.5高速突防时,三角翼零升阻力系数最小,比平直翼加挂副油箱构型减小了14.4%,最大升阻比提高了34.6%;④所有计算状态下俯仰力矩特性均良好。研究结果验证了变前掠翼无人机气动布局新概念的合理性和先进性,可为高性能无人机的设计提供参考。  相似文献   

11.
无限翼展后掠翼大迎角绕流和涡控制的数值模拟   总被引:1,自引:0,他引:1  
通过数值求解Navier-Stokes方程,研究了无限翼展直后掠翼在不同后掠角下的大迎角粘性分离流,探讨了后掠角对流场结构和升阻力特性的影响。基于对流动特性的机理分析,文中进一步数值模拟了无限展长后掠惭带表面吹吸气的大迎角绕流,研究了以非定常质量引射作为外激发手段对后掠翼前缘涡形成、发展和脱泻、以及对提高机翼升力特性的影响。  相似文献   

12.
'W'型无尾布局流动机理研究   总被引:1,自引:0,他引:1  
基于NS方程数值模拟方法,研究了‘W’型无尾布局的流动机理。与参照前掠翼布局相比,‘W’布局优越的气动性能来源于其流动形态的变化:小迎角时,翼身融合升力体设计,使机体表面流动更为通畅,升力增加,机体部件干扰减小,部分补偿了因机身加宽,浸润面积增大带来的摩擦阻力,使总阻力没有明显增加。α≥6°,‘W’布局具有新的流动结构,机翼上表面流动由侧缘涡和前缘涡及其诱导的二次涡所控制,侧缘涡与前缘涡之间产生有利干扰,增强了对机翼表面流动的控制能力,不仅带来涡升力,而且有效控制了前掠翼根部流动分离,是其具有优越纵向气动性能的物理原因。‘W’布局新的流动结构为其横侧气动性能改善奠定了基础,为进一步完善布局设计提供了理论依据。  相似文献   

13.
本文依据在低速风洞所取得的测力、油流观察及旋涡测量结果,研究了前掠翼鸭式布局的鸭翼位置对气动性能的影响机理。研究表明,鸭翼位置对气动性能的影响是极为显著的。前掠翼鸭式布局大迎角性能的提高取决于鸭、主翼前缘涡的相对位置及其相互控制,也就是它们间的相互干扰。文中根据前掠及后掠鸭翼与主翼组合的实验结果,提出了采用鸭式布局时鸭、主翼应具有的平面形状及它们的相对位置。文中还对双前掠翼布局提出了一些看法。  相似文献   

14.
本文基于风洞测力、测压、等试验结果,研究了前掠翼的气动力特点,并与相应的后掠翼做了比较。研究了改进前掠翼根部流动的措施和改进后的收益。在低速情况下,根部适当后掠可以较好地改善前掠翼根部的流动,获得较大的气动力收益。配置鸭翼可以进一步改善前掠翼根部的流动,得到更大的升阻比。例如,根部适当后掠的前掠翼(整流翼)配置鸭翼以后,Cy=0.5时的升阻比可比边条后掠翼配置鸭翼(两种布局升力面面积相等)的升阻比提高24%。 前掠翼在跨音速有较小的零升阻力和诱导阻力。当Mα=1.1,α=6°时,前掠翼的诱导阻力要比后掠翼的小12.5%。低速时改善根部流动的措施在跨音速时仍然有效。前掠翼以及根部适当后掠的前掠翼(整流翼)配置合适的鸭翼,也可使前掠翼的高速性能得到较大改善。  相似文献   

15.
变前掠翼气动布局纵向性能研究   总被引:7,自引:0,他引:7  
发展和改进了一种变前掠翼气动布局及其设计思想,设计了集战斗和轰炸于一体的通用任务模式,并根据设计指标和翼身融合技术初步设计了变翼几何外形。采用N-S方程计算了该几何外形不同构型的纵向气动性能,分析了机翼前掠角对不同任务模式下纵向气动性能的影响。结果表明,变前掠翼气动布局可通过改变机翼前掠角来获取最佳纵向气动性能。  相似文献   

16.
翼尖连接机翼(Joined Wing)布局将后掠的前翼和前掠的后翼在翼尖处用端板相连,后掠翼和前掠翼互相依存,克服平直机翼的局限,提高飞行临界M数,减小诱导阻力,抑制前掠翼的发散倾向.但是该布局的设计参数选择需要气动,结构强度,气动弹性等多学科综合分析,多学科设计优化还需要提供相对于气动设计参数的敏度.探讨了一种翼尖连接机翼布局包含发散速压和变形在内的刚性和弹性气动特性,以及对气动设计参数的敏度,可供该布局的多学科设计优化参考.  相似文献   

17.
首先针对具有中等前缘后掠角梯形鸭翼的缺点提出双后掠鸭翼概念,然后分别对安装梯形鸭翼和双后掠鸭翼的近距耦合鸭式布局的气动性能进行数值模拟研究,分析影响双后掠鸭翼气动性能的流动机理。研究表明:在大迎角时,对于双后掠鸭翼,具有较大前缘后掠角的外翼段可以使鸭翼涡在涡核破裂后仍能形成稳定集中涡并保持较高的强度,增加鸭翼本身的失速迎角,并通过诱导作用改善机翼外翼段流场,进而提高全机大迎角性能,但在小迎角时会破坏鸭翼附着流或前缘气泡涡的发展,造成略微的升力损失。拥有较大失速迎角的双后掠鸭翼在小迎角时具有较大的可用偏度,可以增强布局的抬头控制能力。双后掠鸭翼在满足隐身约束的前提下,超声速阻力较小,具有较好的超声速性能。  相似文献   

18.
前掠翼根部流动分离的控制   总被引:1,自引:1,他引:1  
张彬乾  B.Laschka 《航空学报》1992,13(5):241-246
 在风洞和水洞中研究了机翼根部修形、活动边条、固定边条、边条襟翼和链接边条在控制前掠翼根部流动分离方面的作用。分析了上述措施对机翼流动的干扰机理及其对气动性能的影响。研究结果表明,各种措施对控制前掠翼根部流动分离均有明显效果,可提高大迎角升阻特性,改善纵向力矩特性和配平能力。固定边条和边条襟翼还可改善中小迎角的升阻性能,链接边条和边条襟翼则可使失速性能提高。加鸭翼后上述气动收益更加明显。  相似文献   

19.
通过风洞试验研究了前掠翼融合体无尾气动布局(FBB布局)的流动控制技术。研究结果表明,FBB布局设计使前掠翼的前缘涡与融合于机体的大后掠侧缘的侧缘涡的发展过程达到了较为理想的匹配,有效控制布局的流动是FBB布局获得突出纵向气动性能的主要物理根源。针对大迎角状态提出的两段可动式侧板流动控制技术,通过可动段与固定段前缘之间形成收缩型缝道,将机身下表面的高能气流引入上表面增强了机体侧缘涡,加强了对机翼根部和后体流动的控制、减缓机翼根部分离、控制机头分离区,既可提供俯仰控制力矩,又不损失升力,改善了失速特性,有利于FBB布局的纵向配平和俯仰控制。FBB布局的流动控制设计思想和两段可动式侧板控制技术为无尾布局飞机设计提供了一条崭新的思路。  相似文献   

20.
通过均匀试验法在设计变量状态空间内寻找分布更均匀、更能反映系统性能的状态点,使用改进的片条理论计算机翼的气动特性,建立了扑翼飞行器机翼面积分布(尖削比)、扑动迎角与扑动频率的响应面模型,得到了尖削比对机翼气动特性的影响规律和机翼升力系数关于尖削比、频率与迎角的估算公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号