首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Medaka fish had performed mating behavior successfully in space for the first time among vertebrate, and the eggs which were laid in space developed normally, and hatched during the space travel of 15 days aboard the space shuttle in the second International Microgravity Laboratory (IML-2) mission in 1994 (Ijiri 1994). But there has been few studies whether microgravity affects the development of rather complex tissues in this fish. Investigating this problem, we focused on the organogenetic events in the retina in developing Medaka under normal and simulated microgravity conditions (by a three-dimensional clinostat, 3D-clinostat). Our results showed that both normal and 3D-clinostat-treated Medaka embryos developed on almost equal time course. Moreover, we investigated the development of the retina in normal and 3D-clinostat-treated embryos, but there were no differences in organogenesis of their retina. Lamination of retina occurred almost at equal timing and the expressions of opsin genes in the 3D-clinostat-treated group also began almost at the same time as control. Our observations suggest that there were no definite effects of simulated microgravity on the organizations of a complex tissue such as retina in developing fish embryos.  相似文献   

2.
Fish exhibit looping and rolling behaviors when subjected to short periods of microgravity during parabolic flight. Strain-differences in the behavioral response of adult Medaka fish (Oryzias latipes) were reported previously, however, there have been few studies of larval fish behavior under microgravity. In the present study, we investigated whether microgravity affects the swimming behavior of larvae at various ages (0 to 20 days after hatching), using different strains: HNI-II, HO5, ha strain, and variety of different strains (variety). The preliminary experiments were done in the ground laboratory: the development of eyesight was examined using optokinetic response for the different strains. The visual acuity of larvae improved drastically during 20 days after hatching. Strain differences of response were noted for the development of their visual acuity. In microgravity, the results were significantly different from those of adult Medaka. The larval fish appeared to maintain their orientation, except that a few of them exhibited looping and rolling behavior. Further, most larvae swam normally with their backs turning toward the light source (dorsal light response, DLR), and the rest of them stayed with their abdomen touching the surface of the container (ventral substrate response, VSR). For larval stages, strain-differences and age-differences in behavior were observed, but less pronounced than with adult fish under microgravity. Our observations suggest that adaptability of larval fish to the gravitational change and the mechanism of their postural control in microgravity are more variable than in adult fish.  相似文献   

3.
The swimming behaviour of adult and neonate swordtail fish Xiphophorus helleri was qualitatively analysed from video recordings taken throughout the STS 89 spaceshuttle mission from launch to landing and thereafter. After the flight, the swimming behaviour of neonate samples was quantitatively assessed in the course of the readaptation to 1g earth gravity at days 0, 1 and 4 after recovery. Regarding the swimming behaviour during the mission, the adult fish swam thigmotactically (i.e., responding to tactile stimuli) along the walls of their aquarium, but like the neonates, they did not show any aberrant behavioural patterns. This indicates that they could easily adapt themselves to microgravity. On mission day 9, however, looping responses (most probably initiated by mechanical disturbances) occurred indicating a continuously performed "C-start" escape response (the respective body bend looks like the letter "C"). Immediately after landing (observed in videos recorded onboard the space shuttle), the adults performed a head-up swimming beating heavily with the caudal and pectoral fins; this aberrant behaviour gradually decreased during the first hours after recovery.  相似文献   

4.
Mutant Medaka ha exhibit spontaneous mutation that is characterized by frequent inhibition or perturbation in the formation of utricular otoliths and/or semicircular canals. Three major features of otolith morphogenesis were observed in ha strain: 1) The initial appearance of otoliths was delayed, mispositioned, and malformed compared to normal embryos. 2) No utricular otoliths appeared on macula of any ha fry just after hatching. A symmetric state of otoliths was seen only when saccular otoliths were situated on macula in both inner ears. 3) In some fry, formation of utricular otoliths was observed in their later development. However, no new utricular otoliths appeared after fish were seventy or more days old after hatching. These observations show that otolith morphogenesis in ha is very different from that of wild-type. In this study, we classified adult ha into four different phenotypes using the existence or absence of utricular otoliths as our criteria. We concluded that dysfunction of utricular otoliths and semicircular canals cause a defect that affects the gravity-sensing abilities of medaka ha.  相似文献   

5.
Eggs of Carausius morosus were exposed to spaceflight conditions in two spaceflight missions, the German 7 day Spacelab Mission D1 and the Soviet 12.56 day Biosatellite Mission "COSMOS 1887". During spaceflight the eggs continued their development. Eggs of five different ages representing different sensitivity to radiation and different capacity to regeneration were used to investigate the influence of cosmic radiation and/or microgravity on insect development. Using the Biostack concept--eggs in monolayers sandwiched between nuclear track detectors--and the 1 g reference centrifuge of BIORACK in D1 we were able to separate effects of heavy ions of the cosmic radiation from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, embryonic and larval growth kinetics and anomaly frequencies were determined. Microgravity leads to a reduced hatching rate of eggs exposed in the early stages of development. Hatching was normal in eggs which were exposed on the 1 g reference centrifuge. Hits by heavy ions caused body anomalies. The combined action of heavy ions and microgravity resulted in an unexpectedly high frequency of anomalies. These results obtained from the Spacelab Mission D1, were confirmed in an experiment onboard of COSMOS 1887. In addition to the previous analysis, embryonic development before hatching was followed which showed no major difference between flight and the ground control specimens. Since a reconfirmation of reduced hatching rates was observed in COSMOS 1887, too, the above results suggest some microgravity induced functional impairment of the hatching activity, rather than blockage in embryonic development.  相似文献   

6.
The mutant strain (ha) of medaka (Oryzias latipes) lack utricular otoliths as fry, and some never form otoliths for life. The cross (F1 generation) between the strain having good eyesight and another strain having ordinary eyesight augmented visual acuity of the F1 generation. Crossing the good eyesight strain and ha mutant produced fish having good eyesight and less sensitivity to gravity in the F2 population. Their tolerance to microgravity was tested by parabolic flight using an airplane. The fish exhibited less looping and no differences in degree of looping between light and dark conditions, suggesting that loss of eyesight (in darkness) is not a direct cause for looping behavior in microgravity. The ha embryos could not form utricular otoliths. They did form saccular otoliths, but with a delay. Fry of the mutant fish lacking the utricular otoliths are highly dependent on light upon hatching and exhibit a perfect dorsal-light response (DLR). As they grow, they eventually shift from being light-dependent to being gravity-dependent. Continuous treatment of the fry with altered light direction suppressed this shift to gravity dependence. Being less dependent on gravity, these fish can serve as models in studying the differences expected for the vestibular system of fish reared in microgravity. When these fish were exposed to microgravity (parabolic flights) of an airplane, they spent far less time looping than fish reared in an ordinary light regimen.  相似文献   

7.
The influence of cosmic radiation and/or microgravity on insect development was studied during the 7 day German Spacelab Mission D1. Eggs of Carausius morosus of five stages differing in sensitivity to radiation and in capacity to regeneration were allowed to continue their development in the BIORACK 22°C incubator, either at microgravity conditions or on the 1 g reference centrifuge. Using the Biostack concept - eggs in monolayers were sandwiched between visual track detectors - and the 1 g reference centrifuge, we were able to separate radiation effects from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, growth kinetics and anomaly frequencies were determined in the different test samples. The early stages of development turned out to be highly sensitive to single hits of cosmic ray particles as well as to the temporary exposure to microgravity during their development. In some cases, the combined action of radiation and microgravity even amplified the effects exerted by the single parameters of space. Hits by single HZE particles caused early effects, such as body anomalies, as well as late effects, such as retarded growth after hatching. Microgravity exposure lead to a reduced hatching rate. A synergistic action of HZE particle hits and microgravity was established in the unexpectedly high frequency of anomal larvae. However, it cannot be excluded, that cosmic background radiation or low LET HZE particles are also causally involved in damage observed in the microgravity samples.  相似文献   

8.
We studied the effects of accumulated nitrate in water on the spawning, hatching and development of medaka using a simple nitrifying filter and a combined filter having both nitrifying and denitrifying capabilities. A nitrate concentration of 100 mg NO3(-)-N/L was clearly of lethal toxicity to fish when they were exposed to nitrate in both adult and the growing phases. A nitrate concentration of 75 mg NO3(-)-N/L reduced the fertilization rate, delayed the hatching time and reduced the hatching rate of the eggs laid by adults and decreased the growth rate of juveniles. In addition, nitrate accumulations as low as 50 mg NO3(-)-N/L remarkably retarded spawning and lowered the number of eggs laid by fish exposed in the juvenile phase. The effects on the reproduction system may be initiated by a low concentration, approximately 30 mg NO3(-)-N/L.  相似文献   

9.
The National Space Development Agency of Japan (NASDA) has more than 20 years of experience developing aquatic animal experiment facilities. We are now studying the next-generation aquatic animal experiment facility or the Aquatic Habitat (AQH) for both Space Shuttle and International Space Station use. A prototype breeding system was designed and tested. Medaka adult fish were able to mate and spawn in this closed circulatory breeding system, and the larvae grew to adult fish and spawned on the 45th day after hatching. The water quality-control system using nitrifying bacteria worked well throughout the medaka breeding test. For amphibians, we also conducted the African clawed toad (Xenopus laevis) breeding test with the same specimen chambers, although a part of circulation loop was opened to air. Xenopus larvae grew and completed metamorphosis successfully in the small specimen chamber. The first metamorphic climax started on the 30th day and was completed on the 38th day.  相似文献   

10.
Japanese tree frogs (Hyla japonica) were flown to the space station MIR and spent eight days in orbit during December, 1990. Under microgravity, their postures and behaviors were observed and recorded. On the MIR, floating frogs stretched four legs out, bent their bodies backward and expanded their abdomens. Frogs on a surface often bent their neck backward and walked backwards. This behavior was observed on parabolic flights and resembles the retching behavior of sick frogs on land--a possible indicator of motion sickness. Observations on MIR were carried out twice to investigate the frog's adaptation to space. The frequency of failure in landing after a jump decreased in the second observation period. After the frogs returned to earth, readaptation processes were observed. The frogs behaved normally as early as 2.5 hours after landing.  相似文献   

11.
Pre-mated adult female newts and fertilized eggs will be flown on the International Microgravity Laboratory-2 flight, in 1994. One objective of the flight will be to observe the influence of microgravity on the development of the gravity-sensing organs in the inner ear. These organs contain sensory hair cells covered by a layer of dense stones (otoconia). Gravity and linear acceleration exert forces on these masses, leading to excitation of the nerve fibers innervating the hair cells. If the production of the otoliths is regulated to reach an optimal weight, their development might be abnormal in microgravity. Ground-based control experiments are reported describing the developmental sequence in which both the otoliths and their associated sensory epithelium and the semicircular canals appear and develop. Three-dimensional reconstruction of serial sections through the otic vesicle of newt embryos at stages 31 through 58 demonstrate the first appearance, relative position and growth of the otoliths. Reports of experiments in which fertilized frog eggs were flown on a Russian Cosmos mission conclude that the utricular otolith is increased in volume, whereas the saccular otolith maintains normal size, suggesting that at least in the utricle, the weight of the otolith might be regulated.  相似文献   

12.
The results are presented of the exposure of Drosophila melanogaster to microgravity conditions during a 15-day biosatellite flight, Biokosmos 9, in a joint ESA-URSS project. The experimental containers were loaded before launch with a set of Drosophila melanogaster Oregon R larvae so that imagoes were due to emerge half-way through the flight. A large number of normally developed larvae were recovered from the space-flown containers. These larvae were able to develop into normal adults confirming earlier results that Drosophila melanogaster of a wild-type constitution can develop normally in the absence of gravity. However, microgravity exposure clearly enhances the number of growing embryos laid by the flies and possibly slows down the developmental pace of the microgravity-exposed animals. Due to some problems in the experimental set-up, this slowing down needs to be verified in future experiments. No live adult that had been exposed to microgravity was recovered from the experiment, so that no life span studies could be carried out, but adult males emerged from the recovered embyros showed a slight shortening in life span and a lower performance in other experimental tests of aging. This agrees with the results of previous experiments performed by our groups.  相似文献   

13.
Vestibular and visual information are two major factors fish use for controlling their posture under 1 G conditions. Parabolic flight experiments were carried out to observe the fish behavior under microgravity for several different strains of Medaka fish (Oryzias latipes). There existed a clear strain-difference in the behavioral response of the fish under microgravity: Some strains looped, while other strains did not loop at all. However, even the latter strains looped under microgravity conditions when kept in complete darkness, suggesting the contribution of visual information to the posture control under microgravity. In the laboratory, eyesight (visual acuity) was checked for each strain, using a rotating striped-drum apparatus. The results also showed a strain-difference, which gave a clue to the different degree of adaptability to microgravity among different strains. Beside loopings, some fish exhibited rolling movement around their body axis. Tracing each fish during and between parabolas, it was shown that to which side each fish rolls was determined specifically to each individual fish, and not to each strain. Thus, rolling direction is not genetically determined. This may support the otolith asymmetry hypothesis. Fish of a mutant strain (ha strain, having homozygous recessive of one gene ha) have some malfunction in otolith-vestibular system, and their behavior showed they are not dependent on gravity. Morphological abnormalities of their ear vesicles during the embryonic and baby stages were noted. Their eyesight and dorsal light responses were also studied. Progress in the project of establishing a new strain which has good eyesight and, at the same time, being deficient in otolith-vestibular system was reported. Crosses between the strain of good eyesight and ha strain were made, and to some extent, F2 fish have already shown such characteristics suited for living under microgravity conditions.  相似文献   

14.
During the 8 day IML-1 mission, regeneration of cell walls and cell divisions in rapeseed protoplasts were studied using the Biorack microscope onboard the Space Shuttle "Discovery". Samples from microgravity and 1g protoplast cultures were loaded on microscope slides. Visual microscopic observations were reported by the payload specialist Roberta Bondar, by down-link video transmission and by use of a microscope camera. Protoplasts grown under microgravity conditions do regenerate cell walls but to a lesser extent than under 1g. Cell divisions are delayed under microgravity. Few cell aggregates with maximum 4-6 cells per aggregate are formed under microgravity conditions, indicating that microgravity may have a profound influence on plant cell differentiation.  相似文献   

15.
Cichlid fish larvae were reared from hatching to active free swimming under different gravity conditions: natural environment, increased acceleration in a centrifuge, simulated weightlessness in a clinostat and near weightlessness during space flight. Cytochrome oxidase activity was analyzed semiquantitatively on the ultrastructural level as a marker of regional neuronal activity in a primary, vestibular brainstem nucleus and in gravity receptive epithelia in the inner ear. Our results show, that gravity seems to be positively correlated with cytochrome oxidase activity in the magnocellular nucleus of developing fish brain. In the inner ear the energy metabolism is decreased under microgravity concerning utricle but not saccule. Hypergravity has no effect on cytochrome oxidase activity in sensory inner ear epithelia.  相似文献   

16.
Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behavior during PAFs (especially so-called spinning movements and looping responses) and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalization of gravity in teleosteans) of fish swimming kinetotically at microgravity in comparison with animals from the same batch who swam normally. On the histological level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100 micrometers2), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in malformed sensory epithelia.  相似文献   

17.
Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness-phenomena (SMS, a kinetosis). It has been argued that SMS during PAFs might not be based on microgravity alone but rather on changing accelerations from 0 g to 2 g. We test here the hypothesis that PAF-induced kinetosis is based on asymmetric statoliths (i.e., differently weighed statoliths on the right and the left side of the head), with asymmetric inputs to the brain being disclosed at microgravity. Since fish frequently reveal kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), we investigated (1) whether or not kinetotically swimming fish at microgravity would have a pronounced inner ear otolith asymmetry and (2) whether or not slow translational and continuously changing linear (vertical) acceleration on ground induced kinetosis. These latter accelerations were applied using a specially developed parabel-animal-container (PAC) to stimulate the cupular organs. The results suggest that the fish tested on ground can counter changing accelerations successfully without revealing kinetotic swimming patterns. Kinetosis could only be induced by PAFs. This finding suggests that it is indeed microgravity rather than changing accelerations, which induces kinetosis. Moreover, we demonstrate that fish swimming kinetotically during PAFs correlates with a higher otolith asymmetry in comparison to normally behaving animals in PAFs.  相似文献   

18.
Developmental biology studies, using gastrula-arrested cysts of the brine shrimp Artemia franciscana, were conducted during two flights of the space shuttle Atlantis (missions STS-37 and STS-43) in 1991. Dehydrated cysts were activated, on orbit, by addition of salt water to the cysts, and then development was terminated by the addition of fixative. Development took place in 5 ml syringes, connected by tubing to activation syringes, containing salt water, and termination syringes, containing fixative. Comparison of space results with simultaneous ground control experiments showed that equivalent percentages of naupliar larvae hatched in the syringes (40%). Thus, reactivation of development, completion of embryogenesis, emergence and hatching took place, during spaceflight, without recognizable alteration in numbers of larvae produced. Post-hatching larval development was studied in experiments where development was terminated, by introduction of fixative, 2 days, 4 days, and 8 days after reinitiation of development. During spaceflight, successive larval instars or stages, interrupted by molts, occurred, generating brine shrimp at appropriate larval instars. Naupliar larvae possessed the single naupliar eye, and development of the lateral pair of adult eyes also took place in space. Transmission electron microscopy revealed extensive differentiation, including skeletal muscle and gut endoderm, as well as the eye tissues. These studies demonstrate the potential value of Artemia for developmental biology studies during spaceflight, and show that extensive degrees of development can take place in this microgravity environment.  相似文献   

19.
Primordial germ cells (PGCs), precursors of germline cells, display a variety of antigens during their migration to target gonads. Here, we used silk chicken offspring (Gallus gallus domesticus) embryos subjected to space microgravity to investigate the influence of microgravity on PGCs. The ShenZhou-3 unmanned spaceship carried nine fertilized silk chicken eggs, named the flight group, returned to Earth after 7 days space flight. And the control group has the same clan with the flight group. PGCs from flight and control group silk chicken offspring embryos were examined during migration by using two antibodies (2C9 and anti-SSEA-1), in combination with the horseradish peroxidase detection system, and using periodic acid-Schiff’s solution (PAS) reaction. After incubation for about 30 h, SSEA-1 and 2C9 positive cells were detected in the germinal crescent of flight and control group silk chicken offspring embryos. After incubation of eggs for 2–2.5 days, SSEA-1 and 2C9 positive cells were detected in embryonic blood vessels of flight and control group silk chicken offspring embryos. After incubation of eggs for 5.5 days, PGCs in the dorsal mesentery and gonad could also be identified in flight and control group silk chicken offspring embryos by using SSEA-1 and 2C9 antibodies. Based on location and PAS staining, these cells were identified as PGCs. Meanwhile, at the stage of PGCs migration and then becoming established in the germinal ridges, no difference in SSEA-1 or 2C9 staining was detected between female and male PGCs in flight and control group silk chicken offspring embryos. Although there were differences in the profiles of PGC concentration between male and female embryos during the special circulating stage, changing profile of PGCs concentration was similar in same sex between flight and control group offspring embryos. We concluded that there is little effect on PGCs in offspring embryos of microgravity-treated chicken and that PGC development appears to be normal.  相似文献   

20.
Early development of fern gametophytes in microgravity.   总被引:8,自引:0,他引:8  
Dormant spores of the fern Ceratopteris richardii were flown on Shuttle mission STS-93 to evaluate the effects of micro-g on their development and on their pattern of gene expression. Prior to flight the spores were sterilized and sown into one of two environments: (1) Microscope slides in a video-microscopy module; and (2) Petri dishes. All spores were then stored in darkness until use. Spore germination was initiated on orbit after exposure to light. For the spores on microscope slides, cell level changes were recorded through the clear spore coat of the spores by video microscopy. After their exposure to light, spores in petri dishes were frozen in orbit at four different time points during which on earth gravity fixes the polarity of their development. Spores were then stored frozen in Biological Research in Canister units until recovery on earth. The RNAs from these cells and from 1-g control cells were extracted and analyzed on earth after flight to assay changes in gene expression. Video microscopy results revealed that the germinated spores developed normally in microgravity, although the polarity of their development, which is guided by gravity on earth, was random in space. Differential Display-PCR analyses of RNA extracted from space-flown cells showed that there was about a 5% change in the pattern of gene expression between cells developing in micro-g compared to those developing on earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号