首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fish exhibit looping and rolling behaviors when subjected to short periods of microgravity during parabolic flight. Strain-differences in the behavioral response of adult Medaka fish (Oryzias latipes) were reported previously, however, there have been few studies of larval fish behavior under microgravity. In the present study, we investigated whether microgravity affects the swimming behavior of larvae at various ages (0 to 20 days after hatching), using different strains: HNI-II, HO5, ha strain, and variety of different strains (variety). The preliminary experiments were done in the ground laboratory: the development of eyesight was examined using optokinetic response for the different strains. The visual acuity of larvae improved drastically during 20 days after hatching. Strain differences of response were noted for the development of their visual acuity. In microgravity, the results were significantly different from those of adult Medaka. The larval fish appeared to maintain their orientation, except that a few of them exhibited looping and rolling behavior. Further, most larvae swam normally with their backs turning toward the light source (dorsal light response, DLR), and the rest of them stayed with their abdomen touching the surface of the container (ventral substrate response, VSR). For larval stages, strain-differences and age-differences in behavior were observed, but less pronounced than with adult fish under microgravity. Our observations suggest that adaptability of larval fish to the gravitational change and the mechanism of their postural control in microgravity are more variable than in adult fish.  相似文献   

2.
Mutant Medaka ha exhibit spontaneous mutation that is characterized by frequent inhibition or perturbation in the formation of utricular otoliths and/or semicircular canals. Three major features of otolith morphogenesis were observed in ha strain: 1) The initial appearance of otoliths was delayed, mispositioned, and malformed compared to normal embryos. 2) No utricular otoliths appeared on macula of any ha fry just after hatching. A symmetric state of otoliths was seen only when saccular otoliths were situated on macula in both inner ears. 3) In some fry, formation of utricular otoliths was observed in their later development. However, no new utricular otoliths appeared after fish were seventy or more days old after hatching. These observations show that otolith morphogenesis in ha is very different from that of wild-type. In this study, we classified adult ha into four different phenotypes using the existence or absence of utricular otoliths as our criteria. We concluded that dysfunction of utricular otoliths and semicircular canals cause a defect that affects the gravity-sensing abilities of medaka ha.  相似文献   

3.
Primordial germ cells (PGCs), precursors of germline cells, display a variety of antigens during their migration to target gonads. Here, we used silk chicken offspring (Gallus gallus domesticus) embryos subjected to space microgravity to investigate the influence of microgravity on PGCs. The ShenZhou-3 unmanned spaceship carried nine fertilized silk chicken eggs, named the flight group, returned to Earth after 7 days space flight. And the control group has the same clan with the flight group. PGCs from flight and control group silk chicken offspring embryos were examined during migration by using two antibodies (2C9 and anti-SSEA-1), in combination with the horseradish peroxidase detection system, and using periodic acid-Schiff’s solution (PAS) reaction. After incubation for about 30 h, SSEA-1 and 2C9 positive cells were detected in the germinal crescent of flight and control group silk chicken offspring embryos. After incubation of eggs for 2–2.5 days, SSEA-1 and 2C9 positive cells were detected in embryonic blood vessels of flight and control group silk chicken offspring embryos. After incubation of eggs for 5.5 days, PGCs in the dorsal mesentery and gonad could also be identified in flight and control group silk chicken offspring embryos by using SSEA-1 and 2C9 antibodies. Based on location and PAS staining, these cells were identified as PGCs. Meanwhile, at the stage of PGCs migration and then becoming established in the germinal ridges, no difference in SSEA-1 or 2C9 staining was detected between female and male PGCs in flight and control group silk chicken offspring embryos. Although there were differences in the profiles of PGC concentration between male and female embryos during the special circulating stage, changing profile of PGCs concentration was similar in same sex between flight and control group offspring embryos. We concluded that there is little effect on PGCs in offspring embryos of microgravity-treated chicken and that PGC development appears to be normal.  相似文献   

4.
Medaka fish had performed mating behavior successfully in space for the first time among vertebrate, and the eggs which were laid in space developed normally, and hatched during the space travel of 15 days aboard the space shuttle in the second International Microgravity Laboratory (IML-2) mission in 1994 (Ijiri 1994). But there has been few studies whether microgravity affects the development of rather complex tissues in this fish. Investigating this problem, we focused on the organogenetic events in the retina in developing Medaka under normal and simulated microgravity conditions (by a three-dimensional clinostat, 3D-clinostat). Our results showed that both normal and 3D-clinostat-treated Medaka embryos developed on almost equal time course. Moreover, we investigated the development of the retina in normal and 3D-clinostat-treated embryos, but there were no differences in organogenesis of their retina. Lamination of retina occurred almost at equal timing and the expressions of opsin genes in the 3D-clinostat-treated group also began almost at the same time as control. Our observations suggest that there were no definite effects of simulated microgravity on the organizations of a complex tissue such as retina in developing fish embryos.  相似文献   

5.
Synapse counting was undertaken by conventional electron microscopy in primary vestibular integration centers (i.e., Nucleus descendens, Nd, and Nucleus magnocellularis, Nm, of the brainstem Area octavolateralis) and in the diencephalic visual Nucleus corticalis (Nc) of spaceflown neonate swordtail fish Xiphophorus helleri as well as in 1 g control siblings. Spaceflight (16 days microgravity, STS-90 Neurolab-Mission) yielded an increase in synaptic contacts only within the vestibular Nd indicating that lack of input resulted in compensation processes. No effect of microgravity, however, was observed in the visual Nc and in the vestibular Nm which is situated in the close vicinity of the Nd. In contrast to the latter, the Nm does not receive exclusively vestibular input, but inputs from the lateral line as well, possibly providing sufficient input at microgravity.  相似文献   

6.
Seedlings of cucurbitaceous plants develop a protuberant tissue, or peg, on the lower side of the transition region between root and hypocotyl when germinated in a horizontal position. Peg develops due to a change in growth polarity of the cortical cells. We have examined the role of the cytoskeletal structure in peg formation of cucumber seedlings. We observed that in both peg and normal cortical cells of 36 h-old seedlings the microtubules (MTs) were arranged perpendicular to the longitudinal axis of the elongating cells. Application of colchicine perturbed the MTs structure and inhibited the formation of pegs. In 20 h-old seedlings, MTs in cortical cells destined to be a peg tissue had no preferential organization, whereas MTs in normal cortical cells were transversely oriented. After 24 h, the MTs in future peg cells were arranged similar to those of 36 h-old seedlings, although the initiation of peg tissue was not yet visible. These results suggest that reorganization of MTs is required for peg formation and causes the change in growth polarity of the cortical cells.  相似文献   

7.
During the TEXUS-17 flight (April/May 1988) eggs of a higher organism, the anuran amphibian Xenopus laevis, have for the first time been successfully fertilized under microgravity on a Sounding Rocket. This result also implies that Life Sciences Experiments of Short Duration can be carried out on Sounding Rockets. The latter can therefore function as additional carriers for such experiments. Histological sections of the experimental material demonstrated the penetration of sperm into eggs, while SEM analysis revealed the differentiation of characteristic egg surface structures. Our TEXUS-17 experiment convincingly shows that the modified automatic experiment container, originally designed for experimental BR 52NL on the D1-mission, now functions flawlessly. Eight containers were flown in an airtight, well-isolated box (TEM 06-15), and a similar set was activated on Earth, two hours later. The analysis of the biological material is in progress.  相似文献   

8.
Sea urchin eggs are generally considered as most suitable animal models for studying fertilization processes and embryonic development. In the present study, they are used for determining a possible role of gravity in fertilization and the establishment of egg polarity and the embryonic axis. For this purpose, eggs of the particularly well known and suitable species Paracentrotus lividus have been automatically fertilized under microgravity conditions during the Swedish sounding rocket flights MASER IV and MASER V. It turns out, that fertilization "in Space" occurs normally and that subsequent embryonic and larval development of such eggs, continued on the ground, is normal, leading to advanced pluteus stages.  相似文献   

9.
Since changing gravity (concerning direction and amplitude) strongly affects inner ear otolith growth and otolithic calcium incorporation in developing fish, it was the aim of the present study to locate the site of mineralization in order to gain cues and insights into the provenance of the otoliths inorganic compounds. Therefore, larval cichlid fish (Oreochromis mossambicus) were incubated in the calcium-tracer alizarin complexone (AC; red fluorescence). After maintenance in aquarium water for various periods (1, 2, 3, 6, 9 and 12 h; 1, 2, 3, 5, 6, 7, 15, 29, 36 and 87 d), the animals were incubated in the calcium-tracer calcein (CAL; green fluorescence). AC thus labeled calcium being incorporated at the beginning of the experiment and would subsequently accompany calcium in the course of a possible dislocation, whereas CAL visualized calcium being deposited right at the end of the test. Subsequently, the otoliths were analyzed using a laser scanning microscope and it was shown that the initial site of calcium incorporation was located directly adjacent to the sensory epithelium and the otolithic membrane. Later, calcium deposits were also found on further regions of the otoliths' surface area, where they had been shifted to in the course of dislocation. This finding strongly indicates that the sensory epithelium plays a prominent role in otolithic biomineralization, which is in full agreement with an own electron microscopical study [ELGRA News 23 (2003) 63].  相似文献   

10.
Larval cichlid fish (Oreochromis mossambicus) siblings were subjected to 3 g hypergravity (hg) and total darkness for 21 days during development and subsequently processed for conventional histology. Further siblings reared at 1 g and alternating light/dark (12h:12h) conditions served as controls. Cell number counts of the visual Nucleus isthmi (Ni) versus the vestibular Nucleus magnocellularis (Nm) revealed that in experimental animals total cell number was decreased in the Ni, possibly due to retarded growth as a result of the lack of visual input whereas no effect was observed in the Nm. Calculating the percentual asymmetry in cell number (i.e., right vs. the left side of the brain), no effects of hg/darkness were seen in the Ni, whereas asymmetry was slightly increased in the Nm. Since the asymmetry of inner ear otoliths is decreased under hg, this finding may indicate efferent vestibular action of the CNS on the level of the Nm by means of a feedback mechanism.  相似文献   

11.
Complex numerical model of young meteor stream formation taking into account reactive deceleration of cometary nucleus and its form change in the process of stream formation is discussed. The model made it possible to predict the existence of fine and superfine structures for young meteor streams, the characteristics of which agree with the observational data on the Draconid and Leonid meteor showers.  相似文献   

12.
Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness-phenomena (SMS, a kinetosis). It has been argued that SMS during PAFs might not be based on microgravity alone but rather on changing accelerations from 0 g to 2 g. We test here the hypothesis that PAF-induced kinetosis is based on asymmetric statoliths (i.e., differently weighed statoliths on the right and the left side of the head), with asymmetric inputs to the brain being disclosed at microgravity. Since fish frequently reveal kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), we investigated (1) whether or not kinetotically swimming fish at microgravity would have a pronounced inner ear otolith asymmetry and (2) whether or not slow translational and continuously changing linear (vertical) acceleration on ground induced kinetosis. These latter accelerations were applied using a specially developed parabel-animal-container (PAC) to stimulate the cupular organs. The results suggest that the fish tested on ground can counter changing accelerations successfully without revealing kinetotic swimming patterns. Kinetosis could only be induced by PAFs. This finding suggests that it is indeed microgravity rather than changing accelerations, which induces kinetosis. Moreover, we demonstrate that fish swimming kinetotically during PAFs correlates with a higher otolith asymmetry in comparison to normally behaving animals in PAFs.  相似文献   

13.
Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we intend to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.  相似文献   

14.
Two new findings, that crystals located in the inner ear gravity receptors of mammals have the internal organization requisite for the piezoelectric property, and that sensory hair cells of these same receptors possess contractile-appearing striated organelles, have prompted the author to model mammalian gravity receptors in the ear on the principles of piezoelectricity and bioenergetics. This model is presented and a brief discussion of its implications for the possible effects of weightlessness follows.  相似文献   

15.
Previous investigations revealed that fish inner ear otolith growth (concerning otolith size and calcium-incorporation) depends on the amplitude and the direction of gravity, suggesting the existence of a (negative) feedback mechanism. In search for the regulating unit, the vestibular nerve was unilaterally transected in neonate swordtail fish (Xiphophorus helleri) which were subsequently incubated in the calcium-tracer alizarin-complexone. Calcium incorporation ceased on the transected head sides, indicating that calcium uptake is neurally regulated.  相似文献   

16.
The mutant strain (ha) of medaka (Oryzias latipes) lack utricular otoliths as fry, and some never form otoliths for life. The cross (F1 generation) between the strain having good eyesight and another strain having ordinary eyesight augmented visual acuity of the F1 generation. Crossing the good eyesight strain and ha mutant produced fish having good eyesight and less sensitivity to gravity in the F2 population. Their tolerance to microgravity was tested by parabolic flight using an airplane. The fish exhibited less looping and no differences in degree of looping between light and dark conditions, suggesting that loss of eyesight (in darkness) is not a direct cause for looping behavior in microgravity. The ha embryos could not form utricular otoliths. They did form saccular otoliths, but with a delay. Fry of the mutant fish lacking the utricular otoliths are highly dependent on light upon hatching and exhibit a perfect dorsal-light response (DLR). As they grow, they eventually shift from being light-dependent to being gravity-dependent. Continuous treatment of the fry with altered light direction suppressed this shift to gravity dependence. Being less dependent on gravity, these fish can serve as models in studying the differences expected for the vestibular system of fish reared in microgravity. When these fish were exposed to microgravity (parabolic flights) of an airplane, they spent far less time looping than fish reared in an ordinary light regimen.  相似文献   

17.
Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behavior during PAFs (especially so-called spinning movements and looping responses) and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalization of gravity in teleosteans) of fish swimming kinetotically at microgravity in comparison with animals from the same batch who swam normally. On the histological level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100 micrometers2), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in malformed sensory epithelia.  相似文献   

18.
Rice caryopsis of Cigalon variety with short grain of the LDEF mission can develop and grow as well as those of the laboratory control. Rice caryopsis of Delta variety with long grain did not develop while a small number of excised embryos can develop and grow as well as the control group. A preliminary study of the Electron Spin Resonance (ESR) spectra of Rice embryos and seeds recorded several month after the flight on flight samples and on control ones has been carried out. All these samples had the same storage time. During storage the radical concentration which usually decreases, now depends on irradiation doses and on whether or not they were delivered in presence of oxygen. The signal variations are smaller than those usually observed in the different parts of the starch. An estimation of a "gamma-equivalent-dose" can be reached.  相似文献   

19.
An absorption feature at 3.4 micrometers has been observed in various lines-of-sight through the diffuse interstellar medium. Its position and width lead to an identification with the C-H stretching mode of solid organic material. A possible mechanism for the production of organic solids in the interstellar medium is UV photoprocessing of icy mantles which accrete on dust grains in dense clouds. Furthermore, thermally induced reactions involving formaldehyde molecules in the mantles could be an important source of organics. Laboratory simulation of these processes shows that a large variety of oxygen- and nitrogen-rich species may be produced. It is shown that the occurrence of periodic transient heating events plays an important role in the production of organic material in the ice mantles. Finally, it is pointed out how future missions like the Infrared Space Observatory (ISO) as well as analysis of comet material by Rosetta may be able to clarify the nature and evolution of interstellar organics.  相似文献   

20.
It has been repeatedly shown earlier that some fish of a given batch reveal motion sickness (a kinetosis) at the transition from 1 g to microgravity. In the course of parabolic aircraft flight experiments, it has been demonstrated that kinetosis susceptibility is correlated with asymmetric inner ear otoliths (i.e., differently weighed statoliths on the right and the left side of the head) or with genetically predispositioned malformed cells within the sensory epithelia of the inner ear. Hitherto, the threshold of gravity perception for inducing kinetotic behavior as well as the relative importance of asymmetric otoliths versus malformed epithelia for kinetosis susceptibility has yet not been determined. The following experiment using the ZARM drop-tower facility in Bremen, Germany, is proposed to be carried out in order to answer the aforementioned questions. Larval cichlid fish (Oreochromis mossambicus) will be kept in a camcorder-equipped centrifuge during the microgravity phases of the drops and thus receive various gravity environments ranging from 0.1 to 0.9 g. Videographed controls will be housed outside of the centrifuge receiving 0 g. Based on the video-recordings, animals will be grouped into kinetotically and normally swimming samples. Subsequently, otoliths will be dissected and their size and asymmetry will be measured. Further investigations will focus on the numerical quantification of inner ear supporting and sensory cells as well as on the quantification of inner ear carbonic anhydrase reactivity. A correlation between: (1) the results to be obtained concerning the g-loads inducing kinetosis and (2) the corresponding otolith asymmetry/morphology of sensory epithelia/carbonic anhydrase reactivity will further contribute to the understanding of the origin of kinetosis susceptibility. Besides an outline of the proposed principal experiments, the present study reports on a first series of drop-tower tests, which were undertaken to elucidate the feasibility of the proposal (especially concerning the question, if some 4.7 s of microgravity are sufficient to induce kinetotic behavior in larval fish).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号