首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Activities associated with human missions to the Moon or to Mars will interact with the environment in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations: (ii) the specific natural environment of the Moon or Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; (vii) surface dust; (viii) impacts by meteorites and micrometeorites. In order to protect the planetary environment. the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the Greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. Grant numbers: 14056/99/NL/PA.  相似文献   

2.
S.I. Pai   《Acta Astronautica》1980,7(12):1471-1475
The flow field in a cometary coma varies from free molecular flow to transition flow and finally to continuum flow. General discussions of these flow regimes with two-phase effects are given. Some numerical results of similarity solution of a strong shock propagation in a two-phase flow are presented.  相似文献   

3.
Bacterial spores have been considered as microbial life that could survive interplanetary transport by natural impact processes or human spaceflight activity. Deposition of terrestrial microbes or their biosignature molecules onto the surface of Mars could negatively impact life detection experiments and planetary protection measures. Simulated Mars solar radiation, particularly the ultraviolet component, has been shown to reduce spore viability, but its effect on spore germination and resulting production of biosignature molecules has not been explored. We examined the survival and germinability of Bacillus subtilis spores exposed to simulated martian conditions that include solar radiation. Spores of B. subtilis that contain luciferase resulting from expression of an sspB-luxAB gene fusion were deposited on aluminum coupons to simulate deposition on spacecraft surfaces and exposed to simulated Mars atmosphere and solar radiation. The equivalent of 42 min of simulated Mars solar radiation exposure reduced spore viability by nearly 3 logs, while germination-induced bioluminescence, a measure of germination metabolism, was reduced by less than 1 log. The data indicate that spores can retain the potential to initiate germination-associated metabolic processes and produce biological signature molecules after being rendered nonviable by exposure to Mars solar radiation.  相似文献   

4.
对导航卫星应用到双站雷达中存在的功率、同步以及干涉等关键问题进行了分析。分析了双站雷达的信噪比的影响因素,得出目标散射面积和允许的最大接收机到目标斜距的关系。分析双站雷达面临的三大同步问题,给出了同步的思路和实现方法。分析了系统的干涉,并提出了解决思路。  相似文献   

5.
The concept of generating electricity using satellite solar power (SSP) has recently enjoyed renewed interest as a source of non-fossil fuel energy. First proposed in the 1960s, then studied sporadically in the past decade, SSP offers a potentially large supply of power but without the carbon emissions associated with evidence of global climate change. SSP faces challenges: competition from other non-fossil renewable energy, such as wind power, and the lead-time and costs required to assemble, test, and deploy an SSP system. At the request of a consortium of electric utilities, of NASA, and of the US National Science Foundation, this paper estimates the value of SSP in four distinct geographic regions, each differing in terms of their resource base for conventional renewable energy. Because deployment of SSP would be sometime in the future, we explicitly incorporate uncertainty in the model. We find the cost-effectiveness of SSP is highly sensitive to geographic region, to the reliability of SSP, and to the cost of carbon damages avoided by its use. The results offer guidance for decision makers in space, energy, and environment programs who must allocate scarce budgetary resources among competing public investment alternatives for clean energy.  相似文献   

6.
Dubois K 《Acta Astronautica》1991,25(8-9):605-613
"Moderne dance" (as opposed to a more academic or classical dance form) uses techniques from kinesiology, anatomy and improvization which are adapted to a cultural, technological and political environment. The function of a choreographic system is to take and give a measure of the world. This includes, with the present tendency of the evolution of culture, a new "naturalism" which seeks the secrets of the body. Dance movements express in terms of space the dimension fo the infinite. It gives somehow the measure of a world within which everything is relative. Except for the speed of light, time and space are bound together by the same principle. The qualities of body awareness and specific motricity in dancers imply--besides a strict discipline--balance, coordination, muscular performance and perfect orientation, problems that astronauts also encounter in microgravity. Could chosen exercises used in modern dance technique be applied to the training of astronauts? Dancer-choreographer Kitsou Dubois has been working in this direction since 1988. She was granted a "Villa Medicis Hors Les Murs" by the French Ministry of Foreign Affairs, to carry on with her research at NASA, Houston, Tex. in April 1989. It allowed her to investigate the reality of this analogy. She intends to evaluate the dancers' subjective vertical refering to Mittelstaedt's observations on the proportional relationship between "space sickness" and some astronauts poor evaluation of the subjective vertical. This study should create a relationship between a choreographer's empirical intuition and a scientific reality.  相似文献   

7.
The use of solar radiation by means of concentrating solar mirror systems, such as parabolic and spheric configurations, mainly is an engineering problem. A decisive characteristic for the optimisation of a complete system with turboelectric power conversion is the thermal cycle applied. Besides the Carnot process, here taken up into the study as an ideal comparative process, suitable processes for the technological realisation are the Brayton process and the Rankine process. The Brayton process is a typical gas turbine process using only the gaseous phase. The Rankine process is a steam engine process using liquid and gaseous phase.The work in hand shows how such solar systems with turboelectric conversion are optimised with respect to their specific weight (kg/kWe) and how the distance to the sun as well as technological data enter into the analysis.As expected, the Carnot cycle as an ideal comparative process for both types of systems shows the best results for the optimum specific mass of the system. Regarding the real processes, the Rankine cycle shows more favourable characteristics than the Brayton cycle. The difference of the specific masses of the real processes mainly results from the different thermal conditions at the radiator.The influence of the distance to the sun is as expected. The nearer to the sun the solar power system operates, the better is the optimum specific mass of the system. For distances to the sun between 0.3 and 1.0 AU the spheric system shows a better behaviour than the parabolic system. For distances to the sun greater than 2.0 AU the parabolic system shows better behaviour of the specific weight. In the region between 1 and 2 AU the better optimum specific mass of the system belongs to the technological data used in the analysis.  相似文献   

8.
As examples of application of the technique suggested in the first part of this work, the problems of optimizing the trajectories of spacecraft transfers between circular coplanar orbits are considered in this second part. During the transfer the spacecraft is controlled by the vector of thrust of a limited-thrust jet engine. The mass consumption is minimized for a limited time of transfer. Extreme trajectories with two and three powered sections (Homan-type and bi-elliptic transfer trajectories) are numerically determined. The solution of these well-studied problems allows one to compare the results of applying the suggested technique with the results of application of other previously used techniques.  相似文献   

9.
In this first part of our paper, it is suggested to use solutions to boundary value problems in the optimization problems (in impulse formulation) for spacecraft trajectories in order to obtain the initial approximation, when boundary value problems of the maximum principle are solved numerically by the shooting method. The technique suggested is applied to the problems of optimal control over motion of the center of mass of a spacecraft controlled by the thrust vector of jet engine with limited thrust in an arbitrary gravitational field in a vacuum. The method is based on a modified (in comparison to the classic scheme) shooting method computation together with the method of continuation along a parameter (maximum reactive acceleration, initial thrust-to-weight ratio, or any other parameter equivalent to them). This technique allows one to obtain the initial approximation with a high precision, and it is applicable to a wide range of optimal control problems solved using the maximum principle, if the impulse formulation makes sense for these problems.  相似文献   

10.
11.
The problem of attitude oscillations of a satellite with a small dynamic asymmetry in the plane of the orbit leads to a system degenerate to the fifth order from the point of view of the method of averaging. An explicit expression for the dominant term is obtained by integration in the complex plane. The recurrence procedure of calculating the higher approximations of the method of averaging is considered, as well as an approach to the analysis of the structure of derived expressions.  相似文献   

12.
ABSTRACT

This study investigated the effects of featural information (landmarks) and geometric information (pre-exposure to a structural map) and their possible interaction during the process of spatial knowledge acquisition of 8- and 11-year-old children and adults in a virtual environment. The study confirmed the well-known result of a developmental achievement in spatial cognition from childhood to adulthood. Although landmarks and the pre-exposure to a structural map did not affect the time to learn a specific route, they influenced the use of behavior in spatial learning and eased the acquisition of spatial knowledge measured by a route reversal and map-drawing tasks. Children and adults are able to integrate featural and geometric information in the spatial knowledge acquisition process in an environmental space, but their integration depends on the spatial processing stages that are investigated. Moreover, it was successfully demonstrated that the use of desktop virtual environments seems to be appropriate to investigate the development of spatial cognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号