首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
X-ray synchrotron emission tells us of the highest energy reached by accelerated electrons. In a few supernova remnants (SN 1006, G347.3-0.5) this is the dominant form of X-ray radiation, but in most it is superposed to the dominant thermal emission. Thanks to the spectro-imaging capability of Chandra and XMM-Newton, X-ray synchrotron emission has now been unambiguously detected in most young supernova remnants (Cas A, Tycho, Kepler). It arises in a very thin shell (a few arcsecs) at the blast wave. The thinness of that shell (much broader in the radio domain) implies that the high energy electrons cool down very fast behind the shock. The magnetic field that one deduces from that constraint is more than 100 μG behind the shock.  相似文献   

2.
3.
We address a new set of models for the spectral analysis of the X-ray emission from young, ejecta-dominated Type Ia supernova remnants. These models are based on hydrodynamic simulations of the interaction between Type Ia supernova explosion models and the surrounding ambient medium, coupled to self-consistent ionization and electron heating calculations in the shocked supernova ejecta, and the generation of synthetic spectra with an appropriate spectral code. The details are provided elsewhere, but in this paper we concentrate on a specific class of Type Ia explosion models (delayed detonations), commenting on the differences that arise between their synthetic X-ray spectra under a variety of conditions.  相似文献   

4.
Increasing observational evidence gathered especially in X-rays and γ-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the “knee” in the energy spectrum of Cosmic rays. This review summarises the current status of γ-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.  相似文献   

5.
Recent observations of SNRs have produced X-ray images with resolution comparable to that routinely achieved at optical wavelengths. There has also been a great improvement in the quality of X-ray spectra. Since most of the energy radiated by SNRs appears as X-rays, these new data are crucial to studies of SNRs, the interaction of SNRs with the interstellar medium, and the SN explosion itself. Images show a variety of shapes ranging from shel-like remnants to those dominated by the influence of central objects which appear both as point sources and as centers of diffuse activity. Once the temperature and spatial distribution of X-ray emitting material is known, the mass of ejected material and the energy release of the SN explosion can sometimes be calculated. X-ray images and spectra of several remnants are shown, and some quantitative results are given.  相似文献   

6.
Ultraviolet spectra of supernova remnants obtained with the IUE satellite provide unique information concerning the shock conditions and elemental abundances in the optically bright filaments. High temperature species such as N V provide diagnostics for shock velocities above 100 km s?1, and strong lines of carbon and silicon in the IUE spectral range make it possible to study the destruction of refractory grains in shocked interstellar gas. Observations of a non-radiative shock at the edge of the Cygnus Loop provide constraints on the physics of the shock front itself. Most of the very young remnants whose optical spectra show anomalous elemental abundances are too highly reddened for IUE observations, but extensive observations of the Crab Nebula and a spectrum of the supernova remnant in NGC 4449 yield carbon to oxygen ratios from which the mass of the progenitor may be estimated.  相似文献   

7.
In the framework of the study of supernova remnants and their complex interaction with the interstellar medium and the circumstellar material, we focus on the galactic supernova remnant W49B. Its morphology exhibits an X-ray bright elongated nebula, terminated on its eastern end by a sharp perpendicular structure aligned with the radio shell. The X-ray spectrum of W49B is characterized by strong K emission lines from Si, S, Ar, Ca, and Fe. There is a variation of the temperature in the remnant with the highest temperature found in the eastern side and the lowest one in the western side. The analysis of the recent observations of W49B indicates that the remnant may be the result of an asymmetric bipolar explosion where the ejecta are collimated along a jet-like structure and the eastern jet is hotter and more Fe-rich than the western one. Another possible scenario associates the X-ray emission with a spherical explosion where parts of the ejecta are interacting with a dense belt of ambient material. To overcome this ambiguity we present new results of the analysis of an XMM-Newton observation and we perform estimates of the mass and energy of the remnant. We conclude that the scenario of an anisotropic jet-like explosion explains quite naturally our observation results, but the association of W49B with a hypernova and a γ-ray burst, although still possible, is not directly supported by any evidence.  相似文献   

8.
Eleven X-rays pulsars have been observed by TENMA between March 1983 and April 1984. Detailed structures in the energy spectra of these X-ray pulsars were obtained using a set of gas scintillation proportional counters aboard TENMA together with pulse periods and pulse profiles. Most of the X-ray pulsars exhibit iron emission lines with the center energy at 6.4 keV.  相似文献   

9.
We review the first observations of globular clusters obtained with the X-ray telescope on board of the ROSAT satellite. In the All-Sky Survey, all known bright sources and two new transient sources were detected. In addition a super-soft source was found in NGC5272. Concerning the dim sources, the survey suggests that those outside the core of ω Cen are not related to the cluster. The survey further improved by one or two magnitudes on many upper limits previously obtained by the HEAO-1 satellite. Pointed observations have improved the positional accuracy of a number of sources, and added to the number of known dim sources. In 47 Tuc, the known central source is resolved into 4 separate sources, which we argue are all soft X-ray transients. A comparison with observations of the old open cluster M67 leads us to suggest that some of the dim sources may be conglomerates of a large number of RS Can Ven type binaries.  相似文献   

10.
The topic of this review is the current state of our knowledge about the degree of initial equilibration between electrons, protons and ions at supernova remnant (SNR) shocks. Specifically, the question has been raised as to whether there is an inverse relationship between the shock velocity and the equilibration. This review aims to compile every method that has been used to measure the equilibration and every SNR on which they have been tested. I review each method, its problems and uncertainties and how those would effect the degree of equilibration (or velocity) inferred. The final compilation of observed electron to proton temperature ratios as a function of shock velocity gives an accurate, conservative picture of the state of our knowledge and the avenues we need to pursue to make progress in our understanding of the relation between the velocity of a shock and the degree of equilibration.  相似文献   

11.
Observations show that the magnetic field in young supernova remnants (SNRs) is significantly stronger than can be expected from the compression of the circumstellar medium (CSM) by a factor of four expected for strong blast waves. Additionally, the polarization is mainly radial, which is also contrary to expectation from compression of the CSM magnetic field. Cosmic rays (CRs) may help to explain these two observed features. They can increase the compression ratio to factors well over those of regular strong shocks by adding a relativistic plasma component to the pressure, and by draining the shock of energy when CRs escape from the region. The higher compression ratio will also allow for the contact discontinuity, which is subject to the Rayleigh–Taylor (R–T) instability, to reach much further out to the forward shock. This could create a preferred radial polarization of the magnetic field. With an Adaptive Mesh Refinement MHD code (AMRVAC), we simulate the evolution of SNRs with three different configurations of the initial CSM magnetic field, and look at two different equations of state in order to look at the possible influence of a CR plasma component. The spectrum of CRs can be simulated using test particles, of which we also show some preliminary results that agree well with available analytical solutions.  相似文献   

12.
An overview is given on the present status of the understanding of the origin of galactic cosmic rays. Recent measurements of charged cosmic rays and photons are reviewed. Their impact on the contemporary knowledge about the sources and acceleration mechanisms of cosmic rays and their propagation through the Galaxy is discussed. Possible reasons for the knee in the energy spectrum and scenarios for the end of the galactic cosmic-ray component are described.  相似文献   

13.
The detection of a soft thermal X-ray component in the spectrum of a bright knot in the halo of the plerion G21.5-0.9 is reported. Using a collisional ionization equilibrium model for an hot optically thin plasma, a temperature of kT 0.12–0.24 keV, a mass of 0.3–1.0 M and a density of 1.6–6 cm−3 is derived. The spectral analysis suggests a possible overabundance of Silicon with respect to the solar value in the knot; if this will be confirmed this object may be a clump of shocked ejecta.  相似文献   

14.
Yohkoh soft X-ray observations have revealed coronal X-ray plasma ejections and jets associated with solar flares. We have studied an X-ray plasma ejection on 1993 November 11 in detail, as a typical example of X-ray plasma ejections (possibly plasmoids expected from the reconnection model). The results are as follows: (1) The shape of the ejected material is a loop before it begins to rise. (2) The ejecta are already heated to 5 – 16 MK before rising. (3) The kinetic energy of the ejecta is smaller than the thermal energy content of the ejecta. (4) The thermal energy of the ejecta is smaller than that of the flare regions. (5) The acceleration occurs during the impulsive phase. These results are compared with the characteristics of X-ray jets, and a possible interpretation (for both plasmoids and jets) based on the magnetic reconnection model is briefly discussed.  相似文献   

15.
16.
This article briefly reviews first the progress of spectroscopy in X-ray astronomy from proportional counters, a major instrument in early phase of X-ray astronomy, to gas scintillation proportional counters, X-ray CCD cameras, transmission and reflection gratings, and finally to X-ray micro-calorimeters. As a typical example of spectral features observed from high mass X-ray binaries (HMXBs), the spectra observed from Vela X-1 with Chandra grating spectrometers are then presented and compared with computer simulations for high mass binary systems.  相似文献   

17.
The EXOSAT observatory has detected the nucleus of NGC 1360 in four photometric energy bands. The data rules out that the emission is from blackbody origin. Initial fits made with LTE model atmosphere spectra require the presence of highly ionized Oxygen and Neon in the stellar atmosphere.  相似文献   

18.
Unlike black hole candidate systems, accreting neutron stars seem to encounter appreciable difficulties in emitting strong hard X-ray fluxes. However, in the catalogue of the hard X-ray sources detected by SIGMA, three sources are associated with type I X-ray bursters. In this paper, we review the present status of the SIGMA observations of these three X-ray burst sources, namely X 1724-308 in the globular cluster Terzan II, KS 1731-260, and GX 354+0.  相似文献   

19.
20.
We present the results of a preliminary spectral analysis performed on the BeppoSAX and XMM observations of the Vela plerion. The broad energy range covered by the instruments on board the two observatories allows an evaluation of the spectral parameters of the high energy emission model and provides an indication on the morphology of the source emission above 10 keV. We confirm the softening of the PWN spectrum (3–10 keV band) at distances greater than 4′ from the pulsar and estimate the diameter of the high energy (>10 keV) emission region to be on the order of 25′–30′.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号