首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Electron density profiles derived from Digisonde ionograms at Argentia, Millstone Hill, Wallops Island, Bermuda, Dourbes and Karachi are compared with IRI model prediction. Four months of data for 1989/90 were analyzed. For a number of station/months N(h) profiles were available every 15 or 30 minutes providing a good statistical database for the evaluation of the IRI model in terms of diurnal and seasonal variations. The data presented here are part of the VIM study (Validation of Ionospheric Models) initiated by the URSI Working Group G3 on Ionospheric Informatics.  相似文献   

2.
3.
The performance of the International Reference Ionosphere (IRI) in predicting the height of the maximum of electron density (hmF2) has been evaluated for similar geomagnetic latitudes stations in the northern hemisphere (NH) and southern hemisphere (SH), and for the last two minima. As truth-sites, the digisonde stations of Millstone Hill (42.6°N, 288.5°E), USA, and Grahamstown (33.3°S, 26.5°E), South Africa, were considered. A monthly averaged diurnal variation was obtained from all the observations and model output in the months studied, and the corresponding difference was also calculated. For this initial study data from summer and winter in the NH and SH were selected for the solstice comparison, and October data for both stations were used to represent equinox conditions. The choice of these periods depended on data availability and quality. The results show that for the earlier minimum in 1996, in general IRI hmF2 values are in reasonable agreement with the observations. The exceptions are October and December in the SH, where IRI hmF2 tends to high, particularly on the dayside, and also July for which the daytime measured values tend to be larger than the IRI ones. For the recent minimum in 2008, IRI tends to over-estimate the hmF2 in most of the observations. The results support the general assertion that thermospheric temperatures were cooler during the last solar minimum as a consequence of an unusually low, and extended, minimum in solar extreme-ultraviolet flux, and in response to continually increasing long-term trend in anthropogenic carbon dioxide. The cooler temperatures not only decrease density at a fixed height, but also make the corresponding contraction of the atmosphere lower the height of the F-region peak.  相似文献   

4.
On behalf of an URSI Working Group 3 initiated study (VIM), three ionospheric models, IRI, PL/PRISM and FLIP, are compared with electron density profiles derived from ionograms Millstone Hill. Four months of data in 1989/90 were analyzed. For most of the time, N(h) profiles were available every 15 minutes providing a good statistical database for the evaluation of the ionospheric models in terms of diurnal and seasonal variations.  相似文献   

5.
We present neutral meridional winds derived from existing ground-based measurements of the height of the F2-layer maximum electron density (hmax). The method of calculation uses an ionospheric model to determine the relationship between hmax and the neutral wind along a magnetic meridian. The meridional wind is derived from a comparison of the modeled layer height with the measured height. This method is used in the global mapping of thermospheric winds using radar and ionosonde measurements from the Global Thermospheric Mapping Study at the summer and winter solstices. The diurnal behavior of the meridional wind is calculated for the two seasons from Millstone Hill radar measurements and from several ionosonde stations. The major features of the winds calculated from Millstone Hill radar data are a 200 m/s southward wind between 0200 and 0400 hours local time at the summer solstice and a northward daytime wind in winter. A sampling of winds derived from ionosonde data shows the diurnal pattern to vary with geographic latitude and longitude. Nighttime equatorward winds are found to be larger in Europe than at other locations of similar latitude.  相似文献   

6.
We present rotational temperature measurements of the mesospheric OH emission layer using a meridional imaging spectrograph at Millstone Hill (42.6°N, 72.5°W). The system is equipped with a state-of-the-art bare-CCD detector and can yield simultaneous quasi-meridional images of the mesospheric OH and O2 intensity and temperature fields at 87 and 94 km altitude during the course of each night. A cross-validation study of the rotational OH temperature measurements obtained on 61 nights during the autumnal months of 2005–2007 was undertaken with near-simultaneous kinetic temperature measurements made by the SABER instrument aboard the NASA TIMED satellite during overpasses of Millstone Hill. Excellent agreement was obtained between the two datasets with the small differences being attributable to differences in the spatial and temporal averaging inherent between the two datasets.  相似文献   

7.
基于1976---2006年美国Millstone非相干散射雷达的电离层观测数据, 分析了美国Millstone地区不同太阳活动条件下, 包括中性风场和电场漂移共同贡献的垂直等效风场的变化特征. 结果表明, Millstone地区的垂直等效风场表现出比较明显的周日、太阳活动和季节变化特征. 晚间垂直向上的等效风较强, 白天等效风较弱, 甚至接近于零. 在不同太阳活动和季节变化条件下, Millstone地区的等效风场都表现出类似的周日变化特征, 低太阳活动条件下, 晚间表现出较大的向上漂移. 这种周日变化和太阳活动变化特征与Millstone地区受到极区热源驱动大气循环的调制以及离子曳力的增减有关. 春季和秋季有相似的幅度和相位变化趋势, 表现出分点对称性; 冬季晚间向上漂移比夏季弱, 且随着太阳活动增强, 差异更加明显, 这再次体现了极区热源驱动大气循环的影响.   相似文献   

8.
The topside ionosphere parameters are studied based on the long-duration Irkutsk incoherent scatter radar (52.9N, 103.3E) measurements conducted in September 2005, June and December 2007. As a topside ionosphere parameter we chose the vertical scale height (VSH) related to the gradient of the electron density logarithm above the peak height. For morphological studies we used median electron density profiles. Besides the median behavior we also studied VSH disturbances (deviations from median values) during the magnetic storm of September 11th 2005. We compared the Irkutsk incoherent scatter radar data with the Millstone Hill and Arecibo incoherent scatter radar observations, the IRI-2007 prediction (using the two topside options) and VSH derived from the Irkutsk DPS-4 Digisonde bottomside measurements.  相似文献   

9.
大量的实验研究表明, 在顶部极光区电离层, 利用EISCAT非相干散射雷达和Millstone Hill雷达可以观测到不对称、增强的离子声波谱线. 考虑到低能H+离子束沉降到背景电离层, 以及电离层顶部O+离子的外流事件, 采用含有场向热流项的双麦克斯韦分布描述H+离子束的分布函数, 进而基于离子-离子双流不稳定性理论来解释增强的离子声波谱线. 场向热流的引入可以减小离子声波谱线的不对称现象, 这样得到的结果更符合实际.   相似文献   

10.
Neutral exospheric and lower thermospheric (100–130 km) temperatures from Thomson scatter measurements at Millstone Hill (42°N) are compared with CIRA temperatures with a view towards identifying deficiencies in the CIRA and recommending revisions. CIRA models the observed diurnal mean temperatures (T0) to within 10% over a wide range of solar conditions (75? F10.7 ? 250), but consistently underestimates the diurnal temperatures with maximum deviations approaching 50% of observed amplitudes (180–240 K) at solar maximum (1200 K ? T0 ? 1400 K). The observed semidiurnal amplitudes, which lie in the range of 20K–80K, are always underestimated and frequently by more than 50%. In the lower thermosphere, tidal oscillations of temperature of order 20K–40K occur which are not modelled by CIRA. In addition, an analysis of exospheric temperatures at Millstone Hill during a magnetic disturbance indicates a response within 1–2 hours from storm onset, whereas CIRA assumes a 6.7 hour delay. Although some of these deficiences are addressed by the more recent MSIS model, there exists a sufficient data base to recommend several additional revisions to the CIRA temperatures at this time.  相似文献   

11.
Neutral exospheric temperatures at 53°, 43° and 33° latitude from Millstone Hill steerable-antenna Thomson scatter measurements, and at 19° latitude from the Arecibo Observatory, obtained during three Thermosphere Mapping Study (TMS) coordinated campaign intervals during 1984 and 1985, are analyzed for diurnal and semidiurnal tidal components. The resulting amplitude and phase latitudinal structures are compared with numerical simulations. The observed semidiurnal tidal components are thought to be significantly affected by tidal waves propagating upwards from below the thermosphere during these solar minimum periods. We speculate that current inadequacies in specifying F-region plasma densities and mean zonal winds at lower altitudes within the simulation model may account for certain discrepancies between observations and theory.  相似文献   

12.
The unusually deep and extended solar minimum of cycle 23/24 made it very difficult to predict the solar indices 1 or 2 years into the future. Most of the predictions were proven wrong by the actual observed indices. IRI gets its solar, magnetic, and ionospheric indices from an indices file that is updated twice a year. In recent years, due to the unusual solar minimum, predictions had to be corrected downward with every new indices update. In this paper we analyse how much the uncertainties in the predictability of solar activity indices affect the IRI outcome and how the IRI values calculated with predicted and observed indices compared to the actual measurements. Monthly median values of F2 layer critical frequency (foF2) derived from the ionosonde measurements at the mid-latitude ionospheric station Juliusruh were compared with the International Reference Ionosphere (IRI-2007) model predictions. The analysis found that IRI provides reliable results that compare well with actual measurements, when the definite (observed and adjusted) indices of solar activity are used, while IRI values based on earlier predictions of these indices noticeably overestimated the measurements during the solar minimum. One of the principal objectives of this paper is to direct attention of IRI users to update their solar activity indices files regularly. Use of an older index file can lead to serious IRI overestimations of F-region electron density during the recent extended solar minimum.  相似文献   

13.
At the Millstone Hill station the Incoherent Scatter Radar (ISR) and a Digisonde 256 are simultaneously operating. Some characteristic true heights determined by both instruments are compared with each other, possible reasons for observed difference are indicated.  相似文献   

14.
Total electron content (TEC) over Tucumán (26.9°S, 294.6°W) measured with Faraday technique during the high solar activity year 1982, is used to check IRI 2001 TEC predictions at the southern crest of the equatorial anomaly region. Comparisons with IRI 90 are also made. The results show that in general IRI overestimates TEC values around the daily minimum and underestimates it the remaining hours. Better predictions are obtained using ground ionosonde measurements as input coefficients in the IRI model. The results suggest that for hours of maximum TEC values the electron density profile is broader than that assumed by the model. The main reason for the disagreement would be the IRI shape of the electron density profile.  相似文献   

15.
背景风场维持的中尺度受导重力波   总被引:3,自引:3,他引:0  
梁君  袁洪 《空间科学学报》1999,19(4):327-333
提出了由上层大气背景风场所维持形成的中尺度重力波受导传播机制,通过一种新的全波解数值方法计算了这种受导波的色散关系和衰减距离。与Millstone Hill地区 动的观测结果进行了比较,很好地解释了该地区的扰动风场滤波现象。  相似文献   

16.
The variability and systematic variations of the properties of the upper mesosphere and lower thermosphere are probably the least well known aspects of the terrestrial atmosphere. Satellite measurements of this region are very limited and rocket and remote sounding techniques do not provide comprehensive coverage. Progress is being made in theoretical studies of this region, primarily with regard to tidal effects, and some progress is being made in analyzing the relatively sparse experimental data that are available. Turbulence dynamics of the region has been studied by analyzing structure measurements at Kwajalein, wind data from Natal and systematic variations of the turbopause altitude determined from measurements of the diffusive separation of argon. One question that is being raised at this time, and it is appropriate at a time near solar maximum, is the extent of solar activity control of the properties of this region of the atmosphere. The occurrence rates and magnitudes of the turbulent diffusivity in the 70 to 90 km altitude region appear to correlate with solar activity with a time lag, as do also the incidence of aurora and the atomic oxygen green line intensity. Solar cycle dependence has been identified in mean zonal wind speeds in the 65 to 110 km altitude region above Saskatoon and in lower thermosphere temperatures measured at Heiss Island and at St. Santin. Millstone Hill data show that the mean meridional wind changes during a solar cycle. Solar cycle variations have also been detected in the stratosphere and troposphere.  相似文献   

17.
18.
TEC values obtained from TOPEX satellite were compared with the International Reference Ionosphere (IRI) 2001 model estimates. The present work also shows results of the IRI model with the option of a new topside electron density distribution (NeQuick model). TOPEX TEC measurements, which include years of high and middle to low solar activity (2000 and 2004), were analyzed by binning the region covered by the satellite (±66°) every five degrees of modip. In general, there is good agreement between IRI predictions and Topex measurements. Cases with large disagreements are observed at low and high latitudes during high solar activity. Comparing the model predictions using the default IRI2001 model and the NeQuick topside option show that the default IRI 2001 version represents the observed data in a more realistic way, but appears to be less reliable at high and low latitudes in some cases.  相似文献   

19.
A “Real-Time” plasma hazard assessment process was developed to support International Space Station (ISS) Program real-time decision-making providing solar array constraint relief information for Extravehicular Activities (EVAs) planning and operations. This process incorporates real-time ionospheric conditions, ISS solar arrays’ orientation, ISS flight attitude, and where the EVA will be performed on the ISS. This assessment requires real-time data that is presently provided by the Floating Potential Measurement Unit (FPMU) which measures the ISS floating potential (FP), along with ionospheric electron number density (Ne) and electron temperature (Te), in order to determine the present ISS environment. Once the present environment conditions are correlated with International Reference Ionosphere (IRI) values, IRI is used to forecast what the environment could become in the event of a severe geomagnetic storm. If the FPMU should fail, the Space Environments team needs another source of data which is utilized to support a short-term forecast for EVAs. The IRI Real-Time Assimilative Mapping (IRTAM) model is an ionospheric model that uses real-time measurements from a large network of digisondes to produce foF2 and hmF2 global maps in 15?min cadence. The Boeing Space Environments team has used the IRI coefficients produced in IRTAM to calculate the Ne along the ISS orbital track. The results of the IRTAM model have been compared to FPMU measurements and show excellent agreement. IRTAM has been identified as the FPMU back-up system that will be used to support the ISS Program if the FPMU should fail.  相似文献   

20.
This paper mainly discusses the improvement of performance of the International Reference Ionosphere (IRI) model in estimating the variation of the Vertical Total Electron Content (VTEC) over the mid latitude American regions during the relatively low (2008–2010) and relatively high (2012) solar activity years. This has been conducted employing the VTEC values obtained from the dual frequency ground based Global Positioning System (GPS) receivers located at Mineral Area Community College, MACC (37.85°N, 269.52°W) and Mississippi County Airport, MAIR (36.85°N, 270.64°W), and the latest versions of the IRI online model (IRI 2007, IRI 2012 and IRI 2016). The study mainly focuses to compare the trend of variability of the monthly and seasonal modeled VTEC values (IRI 2007 VTEC, IRI 2012 VTEC and IRI 2016 VTEC) with the corresponding measured VTEC values (GPS VTEC). The overall results show that the IRI VTEC values (almost in all versions of the model) are generally smaller than the GPS VTEC except after about 15:00 UT (09:00 LT) in the December solstice when the Sun shifts to the high solar activity. On the contrary, overestimations of the VTEC values by the model are observed in traversing from the low solar activity (2008) to high solar activity (2012) phase, especially after about 15:00 UT (09::00 LT) with the IRI 2016 version showing the highest. In general, the IRI 2007 and IRI 2012 versions show similar monthly and seasonal underestimations or overestimations showing that the two versions have almost similar performance. The IRI 2016 version is generally better in capturing both the diurnal and arithmetic mean GPS VTEC values with some exceptional months and seasons as compared to those of the IRI 2007 and IRI 2012 versions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号