首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The latest achievements in very high-energy (VHE) gamma-ray astronomy are discussed. Types of candidate objects for the sources of very high-energy gamma-quanta are considered, and pulsars, as the most probable ones, are anticipated. The objectives of VHE gamma-ray astronomy are presented, outlining the pressing need for complex observations of individual objects.  相似文献   

2.
Young pulsars surrounded by supernova remnants can power synchrotron nebulae through the injection of relativistic particles. Inverse Compton scattering by the high-energy electrons and positrons can produce TeV gamma-ray emission strong enough to be detectable by ground-based telescopes. The Crab nebula is the archetypical example of a gamma-ray plerion and was the first detected TeV source. The observed spectrum is consistent with predictions of synchrotron-self Compton models. This paper will review such models for the Crab and other plerions. Inverse-Compton scattering on other soft photon sources, particularly the 2.7K microwave background, may also be detectable in older remnants.  相似文献   

3.
We review the experimental evidence for Einstein’s general relativity. A variety of high precision null experiments confirm the Einstein Equivalence Principle, which underlies the concept that gravitation is synonymous with spacetime geometry, and must be described by a metric theory. Solar system experiments that test the weak-field, post-Newtonian limit of metric theories strongly favor general relativity. Binary pulsars test gravitational-wave damping and aspects of strong-field general relativity. During the coming decades, tests of general relativity in new regimes may be possible. Laser interferometric gravitational-wave observatories on Earth and in space may provide new tests via precise measurements of the properties of gravitational waves. Future efforts using X-ray, infrared, gamma-ray and gravitational-wave astronomy may one day test general relativity in the strong-field regime near black holes and neutron stars.  相似文献   

4.
We discuss recent results of radius to frequency mapping of pulsars. This method shows that for 43 pulsars the radio emission originates near the polar cap for millisecond pulsars and a few hundred km away for longer period pulsars. If the magnetospheres of these object contain dipolar magnetic fields, the corresponding magnetic field strength in the emission region is about 107 gauss, for all pulsars in the sample. We investigate possible physical reasons for the location of the radio emission.  相似文献   

5.
The structure of both the interior and exterior pulsar magnetosphere depends upon the strength of its plasma source near the surface of the star. We review magnetospheric models in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strength, beyond which coherent radio emission is no longer possible. The observed distribution of pulsar spin periods and period derivatives, and the distribution of pulsars with missing radio pulses, is quantitatively consistent with the pair production threshold, when its variation of neutron star radius and moment of inertia with mass is taken into account. All neutron stars observed as pulsars can have relativistic magnetohydrodynamic wind exterior magnetospheres. The properties of the wind can be directly related to those of the pair production source. Radio pulsars cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed.Proceedings of the NASA/JPL Workshop on the Physics of Planetary and Astrophysical Magnetospheres.Institute of Geophysics and Planetary Physics, UCLA.Center for Plasma Physics and Fusion Engineering, UCLA.On leave from: Centre de Physique Theorique, Ecole Polytechnique, Palaiseau, France.  相似文献   

6.
利用脉冲星极其稳定的自转频率可以形成一种天文时间基准,部分毫秒级脉冲星的稳定度甚至超越了原子钟,但其观测稳定度易受多种噪声源的影响。一般来说,不同的脉冲星的噪声大部分是相互独立的,因此可以通过加权综合和滤波算法构建综合脉冲星时,有效去除计时残差中的噪声。针对此问题,采用10颗毫秒级脉冲星的国际脉冲星计时阵列(international pulsar timing array, IPTA)数据进行了稳定度评估分析,其中7颗脉冲星的观测数据长度在10年以上。综合考虑单颗脉冲星稳定度评估的结果和观测数据的长度后,筛选出了4颗脉冲星用于构建综合脉冲星时。同时对比了经典加权算法、小波分解算法和维纳滤波算法的综合脉冲星时稳定度结果。结果表明:脉冲星的长期稳定度优于短期稳定度,2颗脉冲星在1年处稳定度达10-15量级,8颗在1 000天处也达到了10-15量级,其中PSR J1600-3053在5年处稳定度达到了最佳,为7.023×10-16 。此外,三种算法中,维纳滤波建立的综合脉冲星时稳定度最佳,在5年处达到了1.502×10-15,优于参与构建的其他所有脉冲星的5年稳定度。  相似文献   

7.
Lei  F.  Dean  A. J.  Hills  G. L. 《Space Science Reviews》1997,82(3-4):309-388
The analysis of compact astronomical objects has generally dealt with the physical properties of the source within a two-parameter space, which is defined by the spectral characteristics and time variability. This approach often leads to the situation whereby two or more very different models can explain the observations successfully. Polarimetric observations have the diagnostic potential to discriminate between the different compact source models and can offer a unique insight into the geometrical nature of the emission zones. To date, however, no polarization observation in the gamma-ray energy domain has been successfully performed, due to the difficulties in making polarimetric measurements in this high-energy region of the spectrum. In this paper the polarized gamma-ray emission mechanisms are reviewed with the emphasis on their detectable characteristics. Potential astronomical sites in which these emission mechanisms may be at work are discussed. Observational results obtained in other wavebands and theoretical predications made for some of the most likely astronomical sources of polarization are reviewed. Compton polarimetry has long been used in the field of nuclear gamma-ray spectroscopy in the laboratory. The operational principle behind all generations of nuclear gamma-ray polarimeters has been to measure the asymmetry in the azimuthal distribution of the scattered photons. However none of the polarimeters designed for laboratory experiments will be sensitive enough to observe even the strongest astronomical source. In the past few years there have been a number of innovative developments aimed at the construction of astronomical gamma-ray polarimeters, either as dedicated experiments or in missions with polarimetric capability. The designs of all the polarimeters are based on either discrete or continuous position sensitive detector planes. In this paper the data analysis techniques associated with this type of polarimeter are discussed as well as methods of removing some of the systematic effects introduced by a non-ideal detector response function and observation conditions. Laboratory tests of these new polarimetric techniques are reviewed. They demonstrate the feasibility of building a suitably sensitive astronomical gamma-ray polarimeter. Optimization of the design of pixellated detector array based polarimeters is also addressed. The INTEGRAL mission, which is to be launched by ESA in the year 2001, is the most likely telescope to perform the first successful gamma-ray polarization observation. The polarimetric characteristics of the two main instruments on board INTEGRAL are evaluated and their sensitivities to a wide range of potentially polarized gamma-ray sources are estimated.  相似文献   

8.
人工核素大面积源标准是核工业航测遥感中心等单位经过十余年研究建立的新型计量保障标准,使用该标准,可对监测核应急伽玛辐射环境的机载/车载伽玛能谱仪进行检定.使用大面积源标准检定,可以有效地弥补因机载/车载伽玛能谱仪系统的角响应影响因素复杂而难于模拟计算的缺陷,为监测核应急伽玛辐射环境的机载/车载伽玛能谱仪提供了量值传递的保障.本文介绍了大面积源检定的原理和技术方法.  相似文献   

9.
The ESA satellite COS-B viewed the Cyg-X region 7 times between November 1975 and March 1982. A search for periodic gamma-ray emission (E > 70 MeV) from Cyg X-3 at the characteristic 4.8 h period did not reveal the source. Combining all observations, the 2 upperlimit (E > 70 MeV) on the flux for the phase interval in which X-ray emission has been detected is 1.0 × 10-6 ph cm-2 s-1 and for the phase intervals in which ultra-high-energy (E 500 GeV) gamma-ray emission has been reported 1.0 × 10-7 ph cm-2 s-1. This is about one and two orders of magnitude, repectively, below the flux reported earlier by the SAS-2 team. A comparison of the spatial gamma-ray distribution in the Cyg-X region measured by SAS-2 and COS-B with the total-interstellar-gas distribution leads to the conclusion that in both cases, COS-B and SAS-2, no source has been detected at the position of Cyg X-3 in addition to the diffuse gamma-ray emission expected from the total-gas distribution.The Caravane Collaboration for the COS-B satellite: Laboratory for Space Research Leiden, Leiden, The Netherlands Istituto di Fisica Cosmica del CNR, Milano, Italy Istituto di Fisica Cosmica e Informatica del CNR, Palermo, Italy Max Planck Institut für Physik und Astrophysik, Institut für Extraterrestrische Physik, Garching-bei-München, Germany Service d'Astrophysique, Centre d'Etudes Nucléaires de Saclay, France Space Science Department of the European Space Agency, ESTEC, Noordwijk, The Netherlands.  相似文献   

10.
We compare the properties of Jupiter with those of radio pulsars and find a number of parallels insofar as the magnetic field, energization, and radio emission properties (pulsed, coherent, and microstructured), as well as a number of important presumed differences such as the Io modulation. Now that we can directly explore Jupiter's magnetosphere (but are yet uncertain as to the exact source of its radio emissions) what we learn may help us understand pulsars and other inaccessible astrophysical objects.Proceedings of the NASA JPL Workshop on the Physics of Planetary and Astrophysical Magnetospheres.  相似文献   

11.
We review the long term variability properties of accretion powered X-ray pulsars in massive Pop. I binary systems and discuss how their characteristics, in particular the large dynamic range in luminosity of the transient pulsars, can be understood in terms of the interaction of the accreting material with the neutron star magnetosphere. We point out that the X-ray pulsar transient activity in general can be due to the transition between direct wind accretion and a regime in which the centrifugal drag exerted by the pulsar magnetosphere inhibits accretion onto the neutron star surface.  相似文献   

12.
13.
Spectroscopic study of bright binary X-ray sources, performed with the gas scintillation proportional counters on board Tenma, is reviewed. Properties of an iron emission line from two classes of bright binary X-ray sources: X-ray pulsars and low-mass binary sources, are first presented. It is shown that a most likely candidate for the line emitting region is an Alfven shell in case of X-ray pulsars, whereas that of low mass binary sources is an outer accretion disk. Next, nature of the continuum emission from low-mass binary sources is consistently interpreted by a picture that an optically thick accretion disk extends down to very near the surface of a weakly magnetized neutron star. Origin of ultrasoft spectra of black hole candidate sources is also discussed.  相似文献   

14.
Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to “construct” a galactic-sized gravitational wave detector for low-frequency (\(f_{GW}\sim 10^{-9} \text{--} 10^{-7}\) Hz) gravitational waves. We present the current status and provide an outlook for the future.  相似文献   

15.
Gamma-ray observations from HINOTORI satellite and possible neutron observations from the Tokyo neutron monitor are reviewed. Time histories of gamma-ray and X-ray emissions for both typical impulsive and gradual flares are discussed in connection with the particle acceleration time. The gamma-ray spectral hardening observed around 400 keV is explained from superimposition of two different electron bremsstrahlung spectra. Proton-energy spectra derived from the gamma-ray observations are compared with the solar energetic particle spectra in interplanetary space. The weak correlation between the gamma-ray fluence and the proton flux is discussed in connection with the particle trapping and escaping in the flare region. The limb darkening of the 2.22 MeV line resulting from neutron-proton capture is interpreted in terms of the attenuation by the Compton scattering in the photosphere. Possible solar neutron events recorded by the Tokyo neutron monitor are presented and the correlation between the gamma-ray fluence and the neutron fluence are described.  相似文献   

16.
We see neutron stars principally by their radio and X-ray emission. Their appearance in these different bands depends on whether the emission comes from the surface or its magnetosphere. New phenomena continue to be found from neutron stars, which makes it an exciting and topical research area. This volume is a collection of the papers from a NATO Advanced Study Institute held in Italy in October 1996. Many, and for me the most interesting ones, are substantial reviews on topics such as Pulsar magnetic fields and glitches (M. Ruderman), Radio pulsar population properties (D. Lorimer), Gamma-ray emission from CGRO pulsars (G. Kanbach), Neutron stars and black holes in X-ray binaries (J. van Paradijs), Kilohertz quasi-periodic oscillations in low-mass X-ray binaries (M. van der Klis), Thermonuclear burning on rapidly accreting neutron stars (L. Bildsten), On the X-ray emission properties of rotation powered pulsars (W. Becker and J. Truemper). It will serve as a useful reference and source book for students in high energy astrophysics and related fields. The high price may deter its purchase by individuals, but it will be a good volume for a library needing recent coverage on neutron stars. It does not of course include the most recent developments on anomalous X-ray pulsars or magnetars. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The gamma-ray emissivity for the narrow component (FWHM = 2°) at the 0.3–5 GeV range is derived as a function of the galactocentric distance. The narrow component might result from the interaction between cosmic rays and H2 gas. The mass of gas in the Galactic Center is not large enough to produce the gamma-ray peak, but enough to produce the far-infrared peak. The relation of far-infrared dip and near-infrared hump near l = 356° to gamma-ray hump is discussed.  相似文献   

18.
Space Science Reviews - Most models for the magnetosphere of pulsars assume ultrarelativistic primary particles streaming along the field lines; the resulting curvature photons can initiate...  相似文献   

19.
Detailed information on the high-energy gamma-ray emission from our Galaxy has become available through the two dedicated satellite missions SAS-2 and COS-B. The consistency of the two datasets is discussed; while a satisfying general agreement is observed, a few distinct discrepancies point to possible time variations within the compact source component of the total galactic emission. The bulk of emission appears very well correlated to the column density of the total interstellar gas, as traced by radio observations of Hi and CO. The gamma-ray observations exclude the possibility that H2 dominates in the inner Galaxy, its mass should not exceed the mass existing in the form of Hi. Neither a significant galactocentric gradient of the (high-energy) cosmic-ray flux density is suggested inside the solar circle (outside a decrease is needed), nor a linear coupling between the cosmic rays and the gas is indicated by the gamma-ray data. The systematic variation with longitude of the spectrum of the gamma-ray emission points to an increased flux of cosmic-ray electrons in the 100 MeV to 1 GeV energy range in regions where dense clouds are concentrated. The variation could as well be due to the largely unresolved population of compact gamma-ray objects.  相似文献   

20.
The GRASP mission Gamma-Ray Astronomy with Spectroscopy and Positioning addresses the scientific goals of fine spectroscopy with imaging and accurate positioning of gamma-ray sources, an unexplored area within gamma-ray astronomy. The assessment of GRASP as a future space astronomy mission in the mid-1990s has led to the design of the instrument outlined in this article. Thus GRASP is a third generation gamma-ray telescope and is designed to operate as a high quality spectral imager in the mid-1990s, when, following the GRO, SIGMA, and GAMMA-1 missions, there will be requirement for a more sophisticated instrument to maintain the momentum of advance in gamma-ray astronomy. The telescope will be capable of locating point sources with a precision of typically 1 arc min, whilst making a fine spectral analysis (E/E 1000) of any gamma-ray line features. The high sensitivity of this instrument and the long (> 2 year) lifetime of the mission will enable a large number ( 1000) of astronomical objects to be studied. The GRASP mission has the potential to move gamma-ray astronomy from an era of basic exploration to one in which detailed and novel measurements can be used to gain a better understanding of many astrophysical problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号