首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《中国航空学报》2021,34(5):1-16
The Stereo Particle Image Velocimetry (SPIV) technology is applied to measure the wingtip vortices generated by the up-down symmetrical split winglet. Then, the temporal bi-global Linear Stability Analysis (bi-global LSA) is performed on this nearly equal-strength co-rotating vortex pair, which is composed of an upper vortex (vortex-u) and a down vortex (vortex-d). The results show that the instability eigenvalue spectrum illustrated by (ωr, ωi) contains two types of branches: discrete branch and continuous branch. The discrete branch contains the primary branches of vortex-u and vortex-d, the secondary branch of vortex-d and coupled branch, of which all of the eigenvalues are located in the unstable half-plane of ωi > 0, indicating that the wingtip vortex pair is temporally unstable. By contrast, the eigenvalues of the continuous branch are concentrated on the half-plane of ωi < 0 and the perturbation modes correspond to the freestream perturbation. In the primary branches of vortex-u and vortex-d, Mode Pu and Mode Pd are the primary perturbation modes, which exhibit the structures enclosed with azimuthal wavenumber m and radial wavenumber n, respectively. Besides, the results of stability curves for vortex-u and vortex-d demonstrate that the instability growth rates of vortex-u are larger than those of vortex-d, and the perturbation energy of Mode Pu is also larger than that of Mode Pd. Moreover, the perturbation energy of Mode Pu is up to 0.02650 and accounts for 33.56% percent in the corresponding branch, thereby indicating that the instability development of wingtip vortex is dominated by Mode Pu. By further investigating the topological structures of Mode Pu and Mode Pd with streamwise wavenumbers, the most unstable perturbation mode with a large azimuthal wavenumber of m = 5–6 is identified, which imposes on the entire core region of vortex-u. This large azimuthal wavenumber perturbation mode can suggest the potential physical-based flow control strategy by manipulating it.  相似文献   

2.
The approximate theory of ELF propagation in the Earth-ionosphere transmission line described by Booker (1980) is applied to a simplified worldwide model of the D and E regions, and of the Earth's magnetic field. At 1000 Hz by day, reflection is primarily from the gradient on the underside of the D region. At 300 Hz by day, reflection is primarily from the D region at low latitudes, but it is from the E region at high latitudes. Below 100 Hz by day, reflection is primarily from the gradient on the underside of the E region at all latitudes. By night, reflection from the gradient on the topside of the E region is important. There is then a resonant frequency (~ 300 Hz) at which the optical thickness of the E region for the whistler mode is half a wavelength. At the Schumann resonant frequency in the Earth-ionosphere cavity (~ 8 Hz) the nocturnal E region is almost completely transparent for the whistler mode and is semi-transparent for the Alfvén mode. Reflection then takes place from the F region. ELF propagation in the Earth-ionosphere transmission line by night is quite dependent on the magnitude of the drop in ionization density between the E and F regions. Nocturnal propagation at ELF therefore depends significantly on an ionospheric feature whose magnitude and variability are not well understood. A comparison is made with results based on the computer program of the United States Naval Ocean Systems Center.  相似文献   

3.
4.
以一种基于旋流增益的强化换热技术为研究对象,对狭小受限的气膜孔内冷通道中气膜孔的流量系数开展了试验研究.试验中通过改变气膜孔雷诺数Re(4800~26000)、吹风比M(0.36~2.74)、无量纲冷却通道高度h/d(0.33~2.0)等参数,研究了狭小空间的几何结构、流动参数等对单排气膜孔平均流量系数Cd的影响,并得...  相似文献   

5.
This paper provides a comprehensive update on sporadic E layers that is placed in the context of atmosphere-ionosphere coupling, exemplified here by the fundamental windshear theory processes that govern sporadic E layer formation and variability. Some basics of windshear theory are provided first, followed by a summary of key experimental results, their interpretation and physical understanding. The emphasis is placed on the wind shear control of the diurnal and sub-diurnal variability and altitude descent of sporadic E layers and the key role behind these properties of the diurnal and semidiurnal tides. Furthermore, the paper summarizes recent observations that establish a role also for the planetary waves in sporadic E layer occurrence and long-term variability. The possible mechanisms behind this interaction are examined and evidence is presented which shows that planetary waves affect sporadic E layers indirectly though the amplitude modulation of tides at lower altitudes in the MLT region. Only a brief mention is made about gravity wave effects on sporadic E, which apparently exist but cannot be as crucial in layer forming as thought in the past. There is now enough evidence to suggest that mid- and low-latitude sporadic E is not as “sporadic” as the name implies but a regularly occurring ionospheric phenomenon. This may suggest that the sporadic E layer physics can be incorporated in large-scale atmosphere-ionosphere coupling models.  相似文献   

6.
《中国航空学报》2021,34(7):73-84
The nonlinear cumulative damage model is modified to have high prediction accuracy when the high-low cycle stress frequency ratio m is large (m ≥ 500). The low cycle fatigue (LCF) tests, high cycle fatigue (HCF) tests and combined high and low cycle fatigue (CCF) tests of TC11 titanium alloy were carried out, and the influencing factors of CCF life were analysed. The CCF life declines with the decrease of the ratio of high-low cycle stress frequency m. Both linear and nonlinear cumulative damage models are used to predict the CCF life. The CCF life prediction error of the linear cumulative damage model is great and the predictions tend to be overestimated, which is dangerous for engineering application. The accuracy is relatively high when the high-low cycle stress frequency ratio m ≤ 500. The accuracy of nonlinear cumulative damage model is higher than that of linear model when the high-low cycle stress frequency ratio m ≥ 500. Based on the relationship between high cycle average stress σmajor and material yield limit σp,0.2, a correction term is added to the nonlinear cumulative damage model and verified, which made the modified model more accurate when m ≥ 500.  相似文献   

7.
Initial results are presented from a study of H γ profiles in the two interacting binaries KX And and RX Cas of W Serpentis type. The used CCD spectra with a resolution of 0.13Å/px were obtained with the 2.2m telescope and the Coudé spectrograph at the German-Spanish Astronomical Center at Calar Alto/Spain. KX And. This star is probably a non-eclipsing member of the W Serpentis type interactive binaries and has a period of P = 38.908 days. Our seven spectra of KX And were obtained at phase 0.54 – 0.75. The P Cyg profiles of the H γ line during our observations indicate an expanding shell. The asymetry becomes blue-sided at phase 0.67 and increases thereafter. This points toward a strong outflow of matter in the vicinity of the L3 point. RX Cas. According to the model of Andersen et al. (1988) the primary is a mid-B type star with M = 5.8M and R = 2.5R . The star is completely obscured by a geometrically and optically thick disk, which is supplied by mass transfer from the other component. The secondary is a K1 giant with M = 1.8M and R = 23.5R and fills out his critical Roche lobe. Radiative and geometrical properties of the disk are variable and its structure is probably not homogenous. Five spectra of RX Cas were obtained during the primary eclipse (phase 0.95 – 0.19). The observed double-peak emission is seen only after the eclipse with a separation of ≈ 250 km/s peak-to-peak, while during the eclipse an asymetric line profile can be observed with a red-shifted emission always presented. Also, a central emission at φ = 0.94 should be noticed, probably originating in the vicinity of L1. The observations of both systems indicate that we are dealing with strongly interacting binaries. Further observations are planned for better covering of phase.  相似文献   

8.
To assert the validity of the wall law approach in a RANS code, the results obtained with this approach are compared with those obtained from computations with fine meshes for which the turbulence models, including wall damping functions, are integrated down to the wall. It is shown that a very simple representation of the velocity profile in the wall region gives good results for transonic flows over airfoils with shock wave/boundary layer interaction leading to separation. Moreover, it is also shown that the heat flux can be correctly predicted in separated regions. The case of the infinite swept wing near separation is also considered and gives excellent results.Four popular turbulence models, kε, kω, kl and Spalart Allmaras, have been used for the study, but the approach can be extended to other models.  相似文献   

9.
The purpose of this work is to improve the k-ω-γ transition model for separationinduced transition prediction. The fundamental cause of the excessively small separation bubble predicted by k-ω-γ model is scrutinized from the perspective of model construction. On the basis,three rectifications are conducted to improve the k-ω-γ model for separation-induced transition.Firstly, a damping function is established via comparing the molecular diffusion timescale with the rapid pressure-strain timescale...  相似文献   

10.
克努森数对微尺度相似流动特性影响的实验   总被引:1,自引:0,他引:1  
为了研究克努森数(Kn)对微尺度相似流动特性的影响,选取理论孔径分别为0.357 4mm的小孔和3.6mm的相似放大孔实验件,并保证相同的长径比.在相同的雷诺数(Re)下对孔的Kn相同和不同的情况进行实验研究,计算孔的流量系数并进行分析比较.结果表明:在相同的Re下,小孔与相似放大孔在Kn相同时,两者流量系数吻合性很好;在Kn不同时,小孔和相似放大孔流量系数不同.因此在采用相似放大模型研究微尺度结构的流动特性时,必须保证相似放大件和微尺度原件Kn相同.  相似文献   

11.
含裂纹药柱老化结构分析   总被引:1,自引:0,他引:1  
为讨论不同贮存年限的含裂纹固体火箭发动机药柱的稳定性,基于黏弹性断裂力学,采用有限单元法,于药柱星角裂纹尖端处设奇异裂纹元,计算了弹射和点火情况下的J积分,对比了不同形状和不同贮存年限裂纹J积分的变化.结果表明:发动机在弹射工况下,裂纹J积分随贮存年限的增加而减小,裂纹的扩展机会越小;在点火工况下,裂纹J积分随着贮存时间的增加而增大,裂纹的扩展机会越大,裂纹不稳定.   相似文献   

12.
We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700–2050 Å spectral band with a spectral resolution between 8 Å and 12 Å for extended sources that fill its ~0.05^ × 6.0^ field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a toroidal concave holographic reflection grating. The microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a two-dimensional delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus, and nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the mission's two asteroid flyby targets and of Mars, its moons, and of Earth's moon. ALICE has already successfully completed the in-flight commissioning phase and is operating well in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet C/2002 T7 (LINEAR) in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaign.  相似文献   

13.
富氢/富氧燃气同轴剪切气-气喷嘴性能仿真分析   总被引:1,自引:1,他引:1  
李茂  金平  蔡国飙 《航空动力学报》2010,25(12):2827-2833
采用正交试验设计方法对富氢/富氧燃气同轴剪切气-气喷嘴设计参数氧压降比、燃氧速度比、氧喷嘴出口壁厚进行组合,数值模拟单喷嘴燃烧室燃烧流场,研究喷嘴设计参数及参数之间的交互作用对燃烧性能和燃烧室热载性能的影响,评价指标为燃烧长度、燃烧室壁面平均燃气温度和喷注面板平均燃气温度.仿真结果表明,燃氧速度比对燃烧与热载有显著影响,氧压降比与氢氧燃氧速度比的交互作用影响明显,分析结果对气-气喷嘴试验设计有重要指导意义.   相似文献   

14.
Large underground (underwater) detectors (such as ‘Baikal’ and DUMAND) are discussed for their possible use as gamma-ray telescopes. The signal is caused by high-energy muons (E μ ? 30–100 TeV) produced by the primary gamma-radiation in the Earth's atmosphere. The production of gamma-rays in the source through the reaction p + pπ 0 + X is calculated for a low density target of arbitrary thickness taking the electromagnetic cascade into account. The muon production by gamma-rays in the Earth's atmosphere is calculated using three processes: (i) photoproduction of π- and K-mesons followed by decay to muons, (ii) the direct production of μ+ μ?-pairs: γ + Z → Z + μ + + μ?, and (iii) photoproduction of charmed particles. It is shown that for thin sources with a flat spectrum (integral exponent γ = 1.1) a large (S = 0.1 km2) underground detector can detect both neutrinos and gamma-quanta generated by the source. Finally we compare the performances of underground detectors with S = 0.1 km2 for the search of gamma sources at E = 100 TeV with those of the previously proposed 1 km2 EAS array.  相似文献   

15.
An improved numerical method that can construct Halo/Lissajous orbits in the vicinity of collinear libration points in a full solar system model is investigated. A full solar system gravitational model in the geocentric rotating coordinate system with a clear presentation of the angular velocity relative to the inertial coordinate system is proposed. An alternative way to determine patch points in the multiple shooting method is provided based on a dynamical analysis with Poincare′sections. By employing the new patch points and sequential quadratic programming, Halo orbits for L_1, L_2, and L_3 points as well as Lissajous orbits for L_1 and L_2 points in the EarthMoon system are generated with the proposed full solar system gravitational model to verify the effectiveness of the proposed method.  相似文献   

16.
We investigated the effect of mass accretion on the secondary components in close binomy systems (M total ≤ 2.5 M M 2,0 ≤ 0.75 M ) exchanging mass in the case A. The evolution of the low-mass close binary systems (M total ≤ 2.5 M ) exchanging the mass in the case A depends on the three main factors:

  • -the initial mass ratio (q 0 = M 2,0/M 1,0), which determines the rate of mass transfer between components;
  • -the inital mass of the secondary component (M 2,0) and
  • -the effectiveness of the heating of the photosphere of the secondary component, by infalling matter.
  • The second factor allows to divide all systems into two essentially different groups:
    1. systems in which the secondary component is a star with a radiative envelope, or with a thin convection zone in the uppermost layers;
    2. and systems in which secondary component has a thick convective envelope or is fully convective.
    The systems from the first group evolve into contact in a characteristic time scale 105 – 107 years, and reach contact after transfering of 0.03 – 0.3 M . The mass exchange proceeds only in a thermal time scale. For the systems from the group b the effectiveness of the heating of the stellar surface is the most important. In the case when the entropy of the newly accreted matter is the same as the surface entropy of the secondary, a convective star should shrink upon accretion. Then contact binaries are not formed. In the case when the entropy of the infalling matter is greater then that on the surface, the reaction of the secondary is different. The radius of the secondary component grows rapidly in response to accretion, and the systems reaches contact after the 103 – 3 106 years, and after transfer of 0.002 – 0.2. M . The reaction of the secondary is determined by the formation of the temperature inversion layer below the stellar surface. Full references in: Sarna, M.J. and Fedorova, A.V. (1988) “Evolutionary status of W UMa-type Binaries — Evolution into contact”, Astron. Astrophys., in press.  相似文献   

    17.
    The heating and acceleration of ions during magnetic reconnection relevant to coronal heating and flares is explored via particle-in-cell (PIC) simulations and analytic modeling. We show that the dominant heating mechanism of sub-Alvénic ions during reconnection with a guide field, the case of greatest relevance to the corona, results from pickup behavior during the entry into reconnection exhausts, which produces effective thermal speeds of the order of the Alfvén velocity based on the reconnecting magnetic field. There is a mass-to-charge (M/Q) threshold for pickup behavior that favors the heating of high-M/Q ions. Ions below the threshold gain little energy beyond that associated with convective flow. PIC simulations with protons and alphas confirm the pickup threshold. The enhanced heating of high M/Q ions is consistent with observations of abundance enhancements of such ions in impulsive flares. In contrast to anti-parallel reconnection, the temperature increment during ion pickup is dominantly transverse, rather than parallel, to the local magnetic field. The simulations reveal the dominance of perpendicular heating, which is also consistent with observations. We suggest that the acceleration of ions to energies well above that associated with the Alfvén speed takes place during the interaction with many magnetic islands, which spontaneously develop during 3-D guide-field reconnection. The exploration of particle acceleration in a full 3-D multi-island system remains computationally intractable. Instead we explore ion acceleration in a multi-current layer system with low initial β. Ion energy gain takes place due to Fermi reflection in contracting and merging magnetic islands. Particle acceleration continues until the available magnetic free-energy is significantly depleted so that the pressure of energetic ions approaches that of the reconnecting field. Depending on the strength of the ambient guide field and in spite of the low initial plasma β, the dominance of parallel heating can cause significant regions of the plasma to exceed the marginal firehose condition.  相似文献   

    18.
    19.
    Magnetohydrodynamic (MHD) theory has been used in space physics for more than forty years, yet many important questions about space plasmas remain unanswered. We still do not understand how the solar wind is accelerated, how mass, momentum and energy are transported into the magnetosphere and what mechanisms initiate substorms. Questions have been raised from the beginning of the space era whether MHD theory can describe correctly space plasmas that are collisionless and rarely in thermal equilibrium. Ideal MHD fluids do not induce electromotive force, hence they lose the capability to interact electromagnetically. No currents and magnetic fields are generated, rendering ideal MHD theory not very useful for space plasmas. Observations from the plasma sheet are used as examples to show how collisionless plasmas behave. Interpreting these observations using MHD and ideal MHD concepts can lead to misleading conclusions. Notably, the bursty bulk flows (BBF) with large mean velocities left( v ≥400 km s right) that have been interpreted previously as E×B flows are shown to involve much more complicated physics. The sources of these nonvanishing v events, while still not known, are intimately related to mechanisms that create large phase space gradients that include beams and acceleration of ions to MeV energies. The distributions of these nonvanishing v events are associated with large amplitude variations of the magnetic field at frequencies up to and exceeding the local Larmor frequency where MHD theory is not valid. Understanding collisionless plasma dynamics such as substorms in the plasma sheet requires the self-consistency that only kinetic theory can provide. Kinetic modeling is still undergoing continual development with many studies limited to one and two dimensions, but there is urgent need to improve these models as more and more data show kinetic physics is fundamentally important. Only then will we be able to make progress and obtain a correct picture of how collisionless plasmas work in space.  相似文献   

    20.
    The observed scaling relations imply that supermassive black holes (SMBH) and their host galaxies evolve together. Near-Eddington winds from the SMBH accretion discs explain many aspects of this connection. The wind Eddington factor \(\dot{m}\) should be in the range ~1–30. A factor \(\dot{m}\sim 1\) give black hole winds with velocities v~0.1c, observable in X-rays, just as seen in the most extreme ultrafast outflows (UFOs). Higher Eddington factors predict slower and less ionized winds, observable in the UV, as in BAL QSOs. In all cases the wind must shock against the host interstellar gas and it is plausible that these shocks should cool efficiently. There is detailed observational evidence for this in some UFOs. The wind sweeps up the interstellar gas into a thin shell and propels it outwards. For SMBH masses below a certain critical (Mσ) value, all these outflows eventually stall and fall back, as the Eddington thrust of the wind is too weak to drive the gas to large radii. But once the SMBH mass reaches the critical Mσ value the global character of the outflow changes completely. The wind shock is no longer efficiently cooled, and the resulting thermal expansion drives the interstellar gas far from the black hole, which is unlikely to grow significantly further. Simple estimates of the maximum stellar bulge mass M b allowed by self-limited star formation show that the SMBH mass is typically about 10?3 M b at this point, in line with observation. The expansion-driven outflow reaches speeds v out?1200 km?s?1 and drives rates \(\dot{M}_{\mathrm{out}}\sim 4000~\mathrm {M}_{\odot }\,\mathrm{yr}^{-1}\) in cool (molecular) gas, giving a typical outflow mechanical energy L mech?0.05L Edd, where L Edd is the Eddington luminosity of the central SMBH. This is again in line with observation. These massive outflows may be what makes galaxies become red and dead, and can have several other potentially observable effects. In particular they have the right properties to enrich the intergalactic gas with metals. Our current picture of SMBH-galaxy coevolution is still incomplete, as there is no predictive theory of how the hole accretes gas from its surroundings. Recent progress in understanding how large-scale discs of gas can partially cancel angular momentum and promote dynamical infall offers a possible way forward.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号