首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a new calculation of neutral gas heating by precipitating auroral electrons. It is found that the heating rate of the neutral gas is significantly lower than previous determinations below 200 km altitude. The neutral gas heating arises from the many exothermic chemical reactions that take place from the ions and excited species created by the energetic electrons. The calculations show that less than half the energy initially deposited ends up heating the neutral gases. The rest is radiated or lost in the dissociation of O2 because the O atoms do not recombine in the thermosphere. This paper also presents a new way of calculating the heating rate per ionization that can be used for efficient determination of the overall neutral gas heating for global thermosphere models. The heating rates are relatively insensitive to the neutral atmosphere when plotted against pressure rather than altitude coordinates. At high altitudes, the heating rates are sensitive to the thermal electron density and long-lived species. The calculations were performed with the Field Line Interhemispheric Plasma (FLIP) model using a 2-stream auroral electron precipitation model. The heating rate calculations in this paper differ from previous heating rate calculations in the treatment of backscattered electrons to produce better agreement with observed flux spectra. This paper shows that more realistic model auroral electron spectra can be obtained by reflecting the up going flux back to the ionosphere at the upper boundary of the model. In this case, the neutral gas heating rates are 20%–25% higher than when the backscattered flux escapes from the ionosphere.  相似文献   

2.
One of the strongest solar proton events (SPE) occurred in October 1989. Its forcing of the middle atmosphere chemistry including ionized components in the D-region is examined. The ionization rate, and ozone, NO and OH density temporal and spatial (vertical) deviations induced by the SPE, calculated by a 1-D time-dependent photochemical model separately for daytime and nighttime (not shown here), are used in a 1-D model of the lower ionosphere to calculate the response of ionized components to combined forcing by ionization rate and neutral chemical composition disturbances. The radio wave absorption caused by electron density disturbances after the SPE is calculated and compared with observations. The computed ozone values are compared with observations, as well.  相似文献   

3.
An electron beam (200-eV, 0.25 – 1-mA) emitted fromJapanese magnetosphere exploring satellite JIKIKEN (EXOS-B) has excited a number of plasma waves. Among them, fUHF (upper hybrid frequency) and fp (plasma wave) are most strongly excited and from them, the plasma density and the magnetic field strength can be known. Moreover, when an electron beam is emitted, the spacecraft is charged up positively. When the ambient plasma density is low, the spacecraft is charged up to the beam energy and most of electrons emitted return to the spacecraft. This is another plasma parameter indication in the magnetosphere. These two characteristics that is, the wave excitation and the spacecraft charge-up by the electron beam emission in space are used as very powerful tools for the diagnostics of plasma in the magnetosphere.  相似文献   

4.
Models of the Venus neutral upper atmosphere, based on both in-situ and remote sensing measurements, are provided for the height interval from 100 to 3,500 km. The general approach in model formulation was to divide the atmosphere into three regions: 100 to 150 km, 150 to 250 km, and 250 to 3,500 km. Boundary conditions at 150 km are consistent with both drag and mass spectrometer measurements. A paramount consideration was to keep the models simple enough to be used conveniently. Available observations are reviewed. Tables are provided for density, temperature, composition (CO2, O, CO, He, N, N2, and H), derived quantities, and day-to-day variability as a function of solar zenith angle on the day- and nightsides.Estimates are made of other species, including O2 and D. Other tables provide corrections for solar activity effects on temperature, composition, and density. For the exosphere, information is provided on the vertical distribution of normal thermal components (H, O, C, and He) as well as the hot components (H, N, C, O) on the day- and nightsides.  相似文献   

5.
A study of daily variations of secondary Cosmic Rays (CR) is performed using data on charged and neutral CR fluxes. Particle detectors of Aragats Space-Environmental Center (ASEC), Space Environmental Viewing and Analysis Network (SEVAN) and neutron monitors of the Neutron Monitor Database (NMDB) are used. ASEC detectors continuously register various species of secondary CR with different threshold energies and incident angles. NMDB joins data of 12 Eurasian neutron monitors. Data at the beginning of the 24th solar activity cycle are used to avoid biases due to solar transient events and to establish a benchmark for the monitoring of solar activity in the new started solar cycle.  相似文献   

6.
通过数值求解文献[4]中物理模型A得到的一般形式的色散关系,讨论了无碰撞电流片低频波不稳定性问题.结果表明,哨声波能被无碰撞电流片直接激发.在中性片上(z/di=0),在较宽的波数范围内,斜哨声波是可以传播的,但它基本上是稳定的.在离子惯性区内(z/di<1,电子惯性区外),斜传播的哨声波是不稳定的.在离子惯性区边缘(z/di=1),斜传播的哨声波仍然是不稳定的,增长率更大,不稳定的波频率范围更高.此外,朝向中性片方向传播(kzdi<0)的哨声波比离开中性片方向传播(kzdi>0)的哨声波有更大的增长率.  相似文献   

7.
To improve the physical understanding of the Forbush decreases (FD) and to explore the Space Weather drivers, we need to measure as much geospace parameter as possible, including the changing fluxes of secondary cosmic rays. At the Aragats Space Environmental Center (ASEC) are routinely measured the neutral and charged fluxes of secondary cosmic rays. Each of species has different most probable energy of primary “parent” proton/nuclei. Therefore, the energy range of the Galactic Cosmic Rays (GCR) affected by Interplanetary Coronal Mass Ejection (ICME) can be effectively estimated using data of the ASEC monitors. We presented relations of the magnitude of FD observed in different secondary particle fluxes to the most probable energy of the primary protons. We investigate the correlations between the magnitude of FD with the size, speed, density and magnetic field of the ICME. We demonstrate that the attenuation of the GCR flux incident on the Earth’s atmosphere due to passing of the ICME is dependent on the speed and size of the ICME and the magnetic field strength.  相似文献   

8.
High closure of matter recycling is an obvious requirement for long-term life support systems (LSS). Biological species are obligate components of the LSS since physical/chemical components are not able yet to provide food for crew. However including biological species into LSS is difficult due to specific stoichiometric configuration of their inputs and outputs. Formally the problem is to estimate the ability for given set of species to provide complete closure of LSS. Two possible models of metabolism organization can be considered: rigid and flexible ones. Stoichiometric analyses showed that the rigid metabolism case is not typical and takes place with very specific requirements. The flexible metabolic model can be applied to describing wide range of systems. Some formal indications of ability to provide complete closure and stationarity of LSS state are considered in the paper. These indications establish some constraints on the form of mathematical models intended to describe artificial and natural ecological systems.  相似文献   

9.
The paper discusses the possibility of particle acceleration up to high energies in relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in the waves under consideration can be made are studied thoroughly. Ultra-high-energy CRs (up to 1020 eV) are shown to be obtained due to the surfing in relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).  相似文献   

10.
本文我们计算了带电粒子在中性线磁场中运动的解析轨道。其结果是:(1)带电粒子在中性片磁场中的运动是粒子在中性线磁场或在具有北向分量的中性片磁场中的第一级近似形式。(2)带电粒子在中性片磁场中的解析轨道的第三级近似形式与电子计算机计算的数值轨道基本相同。它们仅仅在小扰动区与非小扰动区的交界线上出现一些偏差。(3)带电粒子在整个中性片磁场的运动可以分成三种形式。粒子一方面在垂直于磁场的平面上作闭合的周期性轨道运动, 同时闭合轨道的中心还沿着垂直于磁场平行于中性线方向漂移。另一方面粒子还沿磁力线方向做等速运动。(4)在小扰动区中粒子的闭合轨道是一个圆轨道, 但在非小扰动区中却是一个“8”字形轨道, 其漂移速度与小扰动区漂移方向相反, 其大小也比小扰动区漂移大很多。以上结果本文都给出一个完整的解析形式。   相似文献   

11.
自主火星探测高集成离子与中性粒子分析仪   总被引:1,自引:0,他引:1       下载免费PDF全文
小型化、高集成化是深空探测载荷发展的主要趋势。在我国自主火星探测计划中,设计了一种高集成化的火星离子与中性粒子分析仪。采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。  相似文献   

12.
The low solar atmosphere is composed of mostly neutral particles, but the importance of the magnetic field for understanding observed dynamics means that interactions between charged and neutral particles play a very important role in controlling the macroscopic fluid motions. As the exchange of momentum between fluids, essential for the neutral fluid to effectively feel the Lorentz force, is through collisional interactions, the relative timescale of these interactions to the dynamic timescale determines whether a single-fluid model or, when the dynamic frequency is higher, the more detailed two-fluid model is the more appropriate. However, as many MHD phenomena fundamentally contain multi-time-scale processes, even large-scale, long-timescale motions can have an important physical contribution from two-fluid processes. In this review we will focus on two-fluid models, looking in detail at two areas where the multi-time-scale nature of the solar atmosphere means that two-fluid physics can easily develop: shock-waves and instabilities. We then connect these ideas to observations attempting to diagnose two-fluid behaviour in the solar atmosphere, suggesting some ways forward to bring observations and simulations closer together.  相似文献   

13.
This paper presents the method for calculation of DC electric field in the atmosphere and the ionosphere generated by model distribution of external electric current in the lower atmosphere. Appearance of such current is associated with enhancement of seismic activity that is accompanied by emanation of soil gases into the atmosphere. These gases transfer positive and negative charged aerosols. Atmospheric convection of charged aerosols forms external electric current, which works as a source of conductivity current in the atmosphere–ionosphere electric circuit. It is shown that DC electric field generated in the ionosphere by this current reaches up to 10 mV/m, while the long-term vertical electric field disturbances excited near the Earth surface do not exceed 100 V/m. Such limitation of the near-ground field is caused by the formation of potential barrier for charged particles at the Earth surface in a process of their transport from soil to atmosphere.  相似文献   

14.
15.
We present numerical results showing the effect of neutral hydrogen atoms on the solar wind (SW) interaction with the local interstellar medium (LISM), where the interstellar magnetic field (ISMF) is coupled to the interplanetary magnetic field (IMF) at the surface of the heliopause. The IMF on the inner boundary surrounding the Sun is specified in the form of a Parker spiral and self-consistently develops in accordance with the SW motion inside the heliopause. The model of the SW–LISM interaction involves both plasma and neutral components which are treated as fluids. The configuration is chosen where the ISMF is orthogonal to the LISM velocity and tilted 60° to the ecliptic plane. This orientation of the magnetic field is a possible explanation of the 2–3 kHz emission data which is believed to originate ahead of the heliopause. It is shown that the topology of the heliospheric current sheet is substantially affected by the ISMF. The interaction pattern dependence on the neutral hydrogen density is analyzed.  相似文献   

16.
彭超  高扬 《深空探测学报》2015,2(3):246-255
提出了一种新的利用星间洛仑兹力控制卫星相对运动的方法:使主星产生自旋磁场,副星带电,通过控制副星所受的星间洛仑兹力进行编队。假设主星产生的人造磁场表现为偶极子并且运动在一条开普勒圆形轨道上,副星恒定带电并在主星附近运动,同时假设星间洛仑兹力只影响副星的运动而不影响主星的运动。推导了副星在主星HCW(当地垂直当地地平坐标系)坐标系下的相对运动动力学方程。针对偶极子与HCW坐标轴X轴重合的情况下,推导了动力系统下的平衡点(并采用稳定性分析方法分析其线性化意义下的稳定性)、积分常数和零速度曲面,证明了有界相对运动的存在。最后用数值仿真验证了上述结论。  相似文献   

17.
Dust particles of meteoric origin in the lower E-region can affect the conductivity parameters by varying the effective collision frequency and by causing electron bite outs through the capture of ambient electrons. In magnetized plasma, neutral dust particles can alter the effective collision frequency parameters and thus affect the Pedersen and Hall conductivities in the electrojet region. The Cowling conductivity profile is determined by the height profiles of the Hall and Pedersen conductivities. The collision parameters altered by the neutral dust particles can be considerably different from those estimated from atmospheric models, in the lower E-region heights where dust particles of meteoric origin are known to exist in large numbers. A significant fraction of these dust particles may capture free electrons from the ambient medium and get charged negatively. This can result in reduction in the number density of free electrons especially below the electrojet peak where the dust particles can be present in large numbers, at least on days of large meteor showers. This, in turn, can once again alter the vertical profile of the east–west Hall current driven by the vertical Hall polarization field and under favorable conditions, can even account for the reversal of the electrojet currents below the current peak. Assuming a realistic model for the distribution of neutral dust particles, the conductivity parameters are estimated here. Conditions under which the dust particles can cause partial reversals in the electrojet currents are critically examined here.  相似文献   

18.
Four recent sounding rocket experiments demonstrate that the release of neutral gas from both positively and negatively charged vehicles returns the vehicle potential to near the plasma potential. Early active experiment payloads, CHARGE-2 and SPEAR-1, observed enhanced currents from/to the vehicles during unplanned attitude thruster firings. The follow-on CHARGE-2B and SPEAR-3 payloads directly measured the changes to the vehicle potential caused by both planned argon and unplanned nitrogen releases. The gas releases from positively charged CHARGE-2B consistently reduced the potential to 20–50 V, whereas the gas releases from negatively charged SPEAR-3 brought the potential to between −200 and −500 V. The difference in grounding levels for positively and negatively charged payloads suggests that the gas responsible for grounding is near the vehicle, within a small fraction of the sheath size.  相似文献   

19.
An earlier theoretical model (UW-87) accurately predicted the electron temperature in the daytime F-region but suggested N2 concentrations significantly greater than the predictions of MSIS-86. This discrepancy is resolved when the model is developed to include the effects of vibrationally excited nitrogen molecules and electronically excited oxygen ions on the F-region recombination rate. The revised model (UW-92) continues to predict electron temperatures close to the layer peak with great accuracy but it is now more closely consistent with MSIS. However, the electron temperatures predicted by this model, which are in close agreement with EISCAT observations, are significantly higher than the values predicted by the international Reference Ionosphere.  相似文献   

20.
High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号