首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Advisory Council for Aeronautics Research in Europe (ACARE) predicts that European air traffic may nearly triple by 2020. The growth in air traffic is already an increasing problem with capacity at some airports becoming limited due to congestion. This could be alleviated by providing additional passenger capacity at hubs through the introduction of rotorcraft using new IFR procedures and operating simultaneously but independently of the fixed-wing traffic. These Simultaneous Non-Interfering Operations (SNIOps) will be enabled by a ‘reconfiguration’ of the airspace, taking advantage of new navigational and air traffic management systems. SNIOp's raise critical safety questions for rotorcraft wake vortex encounters (WVE's) and will require consideration of the longitudinal and lateral aircraft separation and the locations of the rotorcraft FATO's (Final Approach and Take-Off areas). This paper presents analysis from work carried out as part of the Framework 6 project ‘OPTIMAL’ including the development of predictive methodology and analysis for rotorcraft WVE's, using a severity rating scale. In particular, scenarios are considered where the rotorcraft is following precision glideslopes of up to 12° in both good and degraded visual conditions. Handling qualities criteria have already been found to be well suited to investigating severity of an encounter. Within this framework, draft boundaries are proposed for assessing the severity of an encounter. Furthermore, the results have shown a pilot may be able to recover from an encounter, but the question of whether the required navigational precision would be compromised and a go-around required is also addressed.  相似文献   

2.
Future applications of UAV systems will depend on the aircraft autonomous behavior and decision capabilities. Search and Rescue is one complex possible mission and is here taken as a case study. The ReSSAC project is a multidisciplinary project at ONERA. Its main challenges are related to the architectures and algorithms for autonomous decision and information processing onboard UAVs that perform their mission in cooperation with operators. The feasibility demonstrations and results of the project are intended to be reused and extended in further studies, projects and collaborations. A first step of the project was to develop an autonomous control architecture for our two rotorcraft. In this paper, we present the current status and preliminary achievements of the ReSSAC project, especially some records of past experimental flights with our autonomous aircraft. We further discuss ongoing studies and research perspectives.  相似文献   

3.
The DoD has many acquisition programs that are aggressively implementing open architecture principles in new avionics systems. Since “open” is an unclear attribute, projects eventually give in to a point solution that has no flexibility to cost effectively keep up with rapid changes in technology. The Open Systems Development Initiative (OSDI) project utilized COTS products to study the feasibility of building an open system that has plug-and-play capabilities. Lessons learned from the AV-8B Open Systems Core Avionics Requirements (OSCAR) and the F/A-18 Advanced Mission Computers and Displays (AMC&D) programs clearly indicated that understanding the underlying interfaces is crucial to keeping the system as open as possible to take advantage of the rapid changes in technology. A matrix of Key Open Standard Interfaces (KOSI), called the KOSI matrix, was developed and an applicable standard was identified for each interface. A list of non-conforming interfaces was also identified and the use of extensions or wrappers was investigated in an attempt to comply with standards. Standardization, rather than optimization of such interfaces, was considered more beneficial. It became evident that, with the exception of ruggedization, there is no difference in the use of COTS products for either commercial or military systems. Performing a KOSI analysis helped identify the key interfaces and standards, thus enabling the OSDI system to be scalable, portable and interoperable. A good KOSI matrix provides a vehicle for clear communication and helps systems integration and technology insertion to be less painful than what it is today. It helps reduce time-to-market and provides guidance to systems engineers and vendors to keep the system open  相似文献   

4.
《Air & Space Europe》2000,2(5):80-83
In the framework of the research project TUBSAT-N (Technical University of Berlin SATellite-Nano) it has been demonstrated that it is possible to achieve ultra low cost space access very quickly. TUBSAT-N and TUBSAT-N1 were launched as a satellite cluster in July 1998 with a convertible Russian military SS-23 SHTIL Rocket from a submarine. This project should prove that nanosatellite technology can be a good solution for a commercial ultra-low cost project.  相似文献   

5.
The growing perception that with cutbacks in the military and the changing international economic environment, the military must rely on commercial industries in order to afford the next generation of high-performance and high-reliability military systems is discussed. One issue associated with the question of whether an industrial base for the military can be provided and maintained without major changes in the operation of both the government and commercial industry is examined, namely, whether commercial standards can effectively supplant military standards and still provide high performance and reliability for military missions  相似文献   

6.
正常类航空器包括正常类飞机和正常类旋翼航空器,是通用航空产业的主要机型,发动机进气系统是此类航空器的重要组成部分,其设计的优劣关系到发动机能否正常工作,在适航审定中需要重点加以关注。为了全面研究正常类航空器进气条款的适航符合性,对正常类飞机及正常类旋翼航空器的适航标准、符合性验证方法进行了分析,并结合某型农林飞机及某型直升机的适航审定案例开展了对比研究。研究结果表明:正常类飞机及正常类旋翼航空器进气条款均采用说明性文件及飞行试验来表明符合性;说明性文件需要对进气系统的设计原理和组成等进行介绍,在具体型号中,此部分内容可以单独给出,也可以包含在动力系统设计说明文件之中;飞行试验验证不必单独开展,一般可与动力装置工作特性检查结合进行;通过对比不同型号的审定案例,给出了正常类航空器进气条款的符合性验证方法与思路,可为后续同类型号的研制与适航审定工作提供参考。  相似文献   

7.
Role of BIT in support system maintenance and availability   总被引:1,自引:0,他引:1  
The role of built in test (BIT) in electronic systems has grown in prominence with the advances in system complexity and concern over maintenance lifecycle costs of large systems. In an environment where standards drive system designs (and provide an avenue for focused advancement in technology), standards for BIT are very much in an evolutionary state. The reasons for advancing the effectiveness of BIT include reduced support overhead, greater, confidence in operation, and increased system availability. The cost of supporting military electronic systems (avionics, communications, and weapons systems) has driven much of the development in BIT technology. But what about the systems that support these end items that contain test and measurement instrumentation - such as automatic test equipment (ATE), simulators and avionics development suites? There has also been a beneficial effect on the maintenance and availability of these systems due to the infusion of BIT into their component assemblies. But the effect has been much more sporadic and fragmented. This paper looks at the state of BIT in test and measurement instruments, explain its affect on system readiness, and present ideas on how to improve BIT technologies and standards. This will not provide definitive answers to BIT development questions, since the factors that affect it are specific to the instrument itself. The topics covered in this paper are: definitions of built-in test, instrument BIT history, importance of BIT fault coverage and isolation in support systems, overview of BIT development process issues that limit the effectiveness of BIT Standards related to instrument BIT, making BIT more effective in support system maintenance and availability and conclusions.  相似文献   

8.
在对直升机旋翼转速调节系统分析研究的基础上,提出了一种基于集成电路设计旋翼转速调节器的总体设计方案,完成了具体电路设计,采用Multisim仿真工具验证了模块电路设计的正确性.实际应用表明,旋翼转速调节器功能完备,各项性能指标满足直升机所提出的性能指标要求,可在直升机上推广使用.  相似文献   

9.
旋翼飞行器的室内自主飞行是目前研究的热点之一。在室内飞行过程中,飞行器姿态和位置信息可以通过运动捕捉系统(Motion Capture System,MCS)来进行实时测量,从而为机载低成本MEMS惯性导航系统提供校正信息。结合四旋翼飞行器的结构特性,提出了一种五点实时测姿算法。相对于目前MCS常用的测姿算法,该算法可以降低标记点安装引起的测姿误差。室内实验结果表明,该算法测姿精度高,并且能够有效实现四旋翼飞行器室内动态实时姿态测量,具有较好的工程应用价值。  相似文献   

10.
In this paper, a problem on measuring the altitude-airspeed parameters (AAPs) of rotorcraft and very light flight vehicles is considered. Some ways of improving systems used to measure the parameters of FV elements and units have been determined. Also suggested and substantiated are the principles and designs of the basic variants of these measuring systems as well as the algorithms of their operation.  相似文献   

11.
《Air & Space Europe》2000,2(3):53-60
This survey paper intends to overview some main technical evolutions impacting present and future general design of rotorcraft (for vehicles, engines and systems), including helicopter and future tilt-rotor. These trends tend to achieve a better adaptation to a wide range of mission requirements with an economic aircraft optimisation and an enhanced safety level and environmental impact. Whilst part I considered the whole rotorcraft technical activity, the present part II is essentially focused on market issues and the tilt-rotor concept introduction.  相似文献   

12.
The 1990s have been stressful for commercial airline industry: fierce competition has caused the demise of several carriers. The resulting drive to slash operating expenses has bolstered development of avionics industry standards for automated test equipment. Rockwell's Collins Air Transport Division (CATD) has begun to market compliant test gear that airline maintenance departments wishing to acquire modern high performance test systems without the development cost penalty have eagerly received. A similar situation now confronts the military. The various branches can no longer justify the maintenance of independent autotest architectures. This paper describes the CATD implementation of the commercial-standard architecture; shows how we have designed the system to avoid obsolescence; and indicates the considerations that are necessary for adapting it to military scenarios  相似文献   

13.
为了进行微小型单旋翼飞行器的动力学建模,通过建立多个坐标系来反映各部分间的相对运动.首先,利用坐标变换得到位置、速度及加速度等向量,并代入拉格朗日方程得到运动学模型;然后,对模型进行数值求解,得到飞行器的姿态响应.仿真结果表明,飞行器定点盘旋时合外力为零,能量保持不变;爬升或前飞时有非保守力做正功,能量增大.  相似文献   

14.
This paper is a proposal for a future method of avionics data communication. The need for this proposal results from the shortcomings in the current avionics architecture, video distribution network, and in the MIL-STD-1553 data communication system. The separately wired video and data communication systems can be combined to save weight, which is especially critical for rotorcraft. Aircraft, once fielded, have limited capacity for modification and improvement due to fixed computer throughput and processing performance, network bandwidth, and space available in the avionics equipment bays. The changes proposed by this paper are to be made in conjunction with the replacement of the redundant computer boxes with open system avionics functions on industry standard circuit cards. This open architecture approach was developed over the last ten years and is now being implemented in many aircraft applications including the F-22 and the RAH-66 programs. The V-22 rotorcraft, which although just entering production, is being modified for joint service customers where modern computer performance and expanded data network bandwidth is needed. The changes of this proposal will fill this need, reduce the weight of upcoming production models, and provide growth or spare capability so that additional video and data components can be added with minimal effect on existing components. This paper examines the current V-22 avionics video and data communication hardware and wiring and propose a new implementation of open system architecture standards with integrated digital video and data communication based on ANSI standard copper fibre channel  相似文献   

15.
旋翼无人机在民用和军用领域被广泛应用,但传统撬式起落架在复杂地形下难以起降,为了扩大旋翼无人机的降落面积和应用范围,设计一种仿人腿式两级缓冲自适应起落架。通过对仿生腿的正逆运动学分析,提出一种自适应起落架姿态调整策略;建立仿生四足六旋翼无人机着陆动力学模型,基于多体动力学软件sim?center 3D 开展了着陆动力学仿真,并与传统撬式起落架进行着陆性能对比研究。结果表明:着陆腿式的两级缓冲自适应起落架及其姿态调整策略,能够使滚转角减小95.69%,过载系数降低34.06%,两级缓冲自适应起落架在面对复杂地形时具备主动调节姿态安全着陆的地形适应能力和极好的减震缓冲能力。  相似文献   

16.
开展直升机人机耦合研究对于确保直升机飞行安全具有重要意义。简要介绍了飞机/直升机人机耦合、驾驶员诱发振荡以及驾驶员辅助振荡等概念及其关系,分析了直升机人机耦合振荡的诱发原因,总结了其分类及特点。对当前国内外直升机人机耦合的研究现状进行了综述,并对驾驶员建模技术和振荡机理分析方法等研究热点问题进行了分析。最后,指出了未来直升机人机耦合的研究趋势。  相似文献   

17.
作战飞机方案的评估,是现代军事和作战问题研究的重要组成部分,也是飞机改进改型和方案优选的重要依据。根据确立的现代作战飞机方案评估的五个层次及相应的计算方法,采用VisualC++的MFC模块设计并开发了一种通用的作战飞机方案评估和决策系统。该系统综合了解析评估法、专家评估法和计算机仿真等多种方法,能够进行飞机综合作战能力、综合作战效能、综合使用效能、综合使用效费和方案评估决策五个层次的量化评估,并可以提供数据文件和可视化图形两种结果形式。采用该系统对多个飞机方案进行评估,结果表明:该系统功能齐全、操作简便、易于通用和拓展,能够提高了飞机方案评估的效率、科学性和综合性,对现代作战飞机及其他武器系统的方案评估和优选提供参考价值。  相似文献   

18.
Small-scale rotorcraft unmanned robotic systems(SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years(2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem,trends, and challenges are described from three aspects. Conclusions of the paper are presented,and the future of SRURSs is discussed to enable further research interests.  相似文献   

19.
An airborne vehicle such as a rotorcraft must avoid obstacles like antennas, towers, poles, fences, tree branches, and wires strung across the flight path. Automatic detection of the obstacles and generation of appropriate guidance and control actions for the vehicle to avoid these obstacles would facilitate autonomous navigation. The requirements of an obstacle detection system for rotorcraft in low-altitude Nap-of-the-Earth (NOE) flight based on various rotorcraft motion constraints is analyzed here in detail. It is argued that an automated obstacle detection system for the rotorcraft scenario should include both passive and active sensors to be effective. Consequently, it introduces a maximally passive system which involves the use of passive sensors (TV, FLIR) as well as the selective use of an active (laser) sensor. The passive component is concerned with estimating range using optical flow-based motion analysis and binocular stereo. The optical flow-based motion analysis that is combined with on-board inertial navigation system (INS) to compute ranges to visible scene points is described. Experimental results obtained using land vehicle data illustrate the particular approach to motion analysis  相似文献   

20.
《Air & Space Europe》2001,3(3-4):152-154
The Tilt-Rotor (T/R) is a relatively new rotorcraft configuration combining the advantages of the propeller-driven airplane and of the helicopter. The RHILP project is focusing on critical T/R flight technologies. The prime objective of RHILP is to study specific aspects of T/R aeromechanics and flight characteristics that are considered to be of the highest importance before designing and testing a flying demonstrator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号