首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 60 毫秒
1.
吸力面翼刀控制压气机叶栅二次流的实验研究   总被引:4,自引:2,他引:4  
在低速风洞上通过详细测量叶栅的出口流场 ,研究了叶片吸力面上不同高度处加翼刀对压气机叶栅损失和二次流的影响。实验结果表明 ,合理地选择翼刀安装位置 ,可有效地控制压气机叶栅的二次流 ,降低叶栅的总损失。  相似文献   

2.
端壁翼刀控制压气机叶栅二次流的机理研究   总被引:4,自引:0,他引:4  
对CDA压气机直叶栅和具有不同流向位置和不同几何参数的端壁翼刀叶栅内三维粘性流场进行了数值模拟.结果表明,端壁翼刀主要通过阻断马蹄涡压力面分支汇入通道涡和有效产生反向翼刀涡来控制二次流.加装在距叶片压力面30%节距处且高度为1/3来流附面层厚度、占据前3/4流道的翼刀布置方式为本文所给出的最佳翼刀位置.  相似文献   

3.
1引言在叶轮机械叶栅内流动控制中,可以通过在叶片吸力面、端壁上安装翼刀或隔片,控制二次流的发展,降低二次流损失,其中将翼刀加装在吸力面上的控制方式即为吸力面翼刀控制技术。吸力面翼刀主要是通过阻断端壁附面层和叶片吸力面附面层近端壁处低能流动沿吸力面的展向迁移来对  相似文献   

4.
对CDA常规直叶栅和三种具有不同高度端壁翼刀压气机叶栅内三维粘性流场进行了数值模拟。计算结果表明,翼刀偏向吸力面一侧上方有反向翼刀涡产生;随着翼刀高度增加,对横向流动的阻断作用增强的同时,翼刀周围损失有所增加;1/3附面层厚度为加装翼刀的最佳翼刀高度,可使叶栅损失降低9%。实验与计算结果吻合较好。   相似文献   

5.
端壁翼刀控制压气机叶栅二次流的数值研究   总被引:3,自引:3,他引:3  
对CDA常规直叶栅和4种端壁翼刀方案下叶栅内三维粘性流场进行了数值研究。分析表明,端壁不同位置上的翼刀不同程度上都阻断了近端壁区域压力面至吸力面的二次流动,翼刀上方偏向吸力面侧有反向"翼刀涡"产生,通道涡的强度被削弱;距压力面30%节距位置为安装端壁翼刀的最佳位置,可使损失降低7%~9%。计算结果和实验结果吻合较好。   相似文献   

6.
压气机叶栅内不同高度端壁翼刀的实验   总被引:1,自引:0,他引:1  
通过采用五孔探针在低速平面风洞上测量压气机叶栅流场的方法,研究了不同高度和周向位置的端壁翼刀对叶栅能量损失及二次流速度矢量的影响.结果表明,使叶栅总损失降低的最佳周向安装位置是距离吸力面70%相对节距处,最佳翼刀高度为5 mm;存在使叶栅总损失降低的极限翼刀高度.当翼刀高度增加时,翼刀涡更加清晰.安装翼刀可以改变叶栅端壁损失的分布,进而控制吸力面/端壁角区的流动,改善叶栅的气动性能.   相似文献   

7.
不同长度端壁翼刀对压气机叶栅二次流影响的数值研究   总被引:5,自引:5,他引:5  
对可控扩散叶型(CDA)常规直叶栅和三种具有不同长度和流向位置的端壁翼刀叶栅内的三维粘性流场进行了数值模拟。结果表明,不同长度端壁翼刀都不同程度上改善了栅内的气流流动状况;较小长度的翼刀所产生的附加损失也较小;反向翼刀涡的产生与流道内横向流动的强弱息息相关。计算结果表明,占据前3/4流道长的翼刀为最佳翼刀。   相似文献   

8.
不同周向位置端壁翼刀对压气机叶栅损失影响的实验研究   总被引:1,自引:0,他引:1  
在低速大尺寸叶栅风洞上通过详细测量叶栅流场,研究了叶栅端壁上不同周向位置处加装端壁翼刀对压气机叶栅损失和二次流的影响。实验结果表明,合理选择翼刀安装位置,可有效地控制压气机叶栅的二次流,降低叶栅的总损失。进一步对实验方案中叶栅总损失最小的翼刀位置的叶栅内流场进行了测量,分析了安装翼刀后流场内涡系结构的变化,探讨了翼刀涡的形成和发展变化。   相似文献   

9.
压气机叶栅内二次流的数值研究   总被引:6,自引:3,他引:3  
本文应用Beam-Warming近似隐式因子分解格式以及MML代数湍流模型,采用拟压缩性方法求解雷诺平均拟压缩N-S方程组,对压气机叶栅内三维粘性流场进行了数值研究。结果发现,在给定的流动条件下,叶栅内有多涡系组成的二次流旋涡结构。这些涡系的产生、发展、破裂以及相互作用显示了叶栅通道内三维流动的主要特征并对流动损失具有重要影响。计算结果与实验结果比较,两者吻合较好。   相似文献   

10.
非轴对称端壁下高负荷压气机叶栅二次流动分析   总被引:1,自引:2,他引:1  
探讨了高负荷压气机叶栅中应用非轴对称端壁的有效性.首先利用NUMECA/Design3D优化软件包来完成了对端壁的优化,然后推导并建立了高负荷压气机叶栅出口含全部掺混损失的二次流损失的计算方法,最后在设计攻角和非设计攻角下对轴对称端壁和非轴对称端壁结构的高负荷压气机叶栅内部及出口流场进行了详细的分析.分析结果表明:在设计攻角和非设计攻角下采用非轴对称端壁均能改变端壁附近载荷分布、降低叶片通道的二次流动损失;在设计攻角下使叶栅周向质量平均总压损失减少约为9.4%,在非设计攻角(±3°)下分别减损7.7%和11.8%;当非轴对称端壁幅值为4%叶高时,二次流动损失最小.   相似文献   

11.
数值研究了合成射流控制高速扩压叶栅角区分离,并揭示其推迟分离、降低损失的作用机理。研究发现:合成射流可以显著改善叶栅内流场的时空结构,叶栅出口时均总压损失系数最大降低19.8%,静压系数也提高了近8.8%。合成射流通过周期性地吹/吸气有效控制角区分离,吹气阶段的高动量射流流体增大了吸力面附面层及角区流体的能量,吸气阶段则借助于附面层抽吸作用有效减少了高熵、低能流体的堆积,从而增强了角区流体抵抗流向逆压力梯度的能力、并推迟流动分离,且吸气阶段的流动控制效果明显更好。射流角度和射流动量是影响合成射流作用效果的重要参数,近切向的合成射流有利于向附面层注入动量,增大射流动量也有助于增强流动控制效果。析因设计研究表明,射流角度的影响效应更为显著,但与射流动量之间并不存在交互作用。   相似文献   

12.
详细阐述了新研制的七孔探针(SHP)及其校准方法,利用亚声速风洞及自行设计的数据处理程序,获得了理想的各类无量纲参数的校准结果.依据校准结果,该七孔探针可以测量气流角与轴线偏离65°左右的复杂二次流动和旋涡流动.误差分析结果表明,校准实验能够保证气流速度和气流角的测量误差分别小于2.04%和1.99°.针对高负荷压气机平面叶栅出口截面气流角变化较大的复杂二次流动,利用该七孔探针能够得到比较准确可信的流场信息,为二次流模型的建立提供基础性的数据支持.   相似文献   

13.
为揭示端壁等离子体气动激励抑制高负荷压气机叶栅角区流动分离的影响规律和流场特征,在不同流场参数和激励条件下分别开展了微秒脉冲和纳秒脉冲等离子体气动激励抑制叶栅流动分离的实验研究.结果表明:端壁等离子体气动激励可以有效抑制叶栅角区的流动分离,其作用效果在攻角为3°时最佳,随攻角的增大逐渐下降;微秒脉冲激励的流动控制效果随来流速度的增大而降低,随激励电压和占空比的增大而提高,最佳非定常脉冲频率为500Hz;在较高来流速度下,微秒脉冲激励的作用效果十分微弱,但纳秒脉冲激励能够有效抑制角区流动分离;纳秒脉冲激励的流动控制效果随激励电压增大而提高,激励频率对控制效果至关重要,作用效果随激励频率的增大而不断增强,但当激励频率为5kHz时,作用效果有所下降.   相似文献   

14.
对一压气机平面叶栅进行全三维数值模拟,分别对两种不同叶尖间隙情况下,移动端壁对叶栅性能及泄漏流流动结构的影响进行分析。详细对比了不同条件下,叶栅损失,泄漏涡传播轨迹及影响范围,泄漏流量等参数的变化,同时通过三维流线结构的对比,对泄漏流在间隙中的流动特点及其在通道中与主流的相互作用进行分析。结果表明:移动端壁加入使泄漏流量增加,泄漏涡传播轨迹向远离吸力面,靠近端壁的方向偏移,削弱通道流与泄漏流之间的剪切作用,改变通道中的各个二次流动结构所占比例。间隙较小时,移动端壁的影响主要集中在端壁附近,而间隙较大时,移动端壁能够抑制叶顶分离涡,从而影响整个间隙中泄漏流的速度分布,进一步削弱通道流与泄漏流动之间的剪切作用。   相似文献   

15.
针对低展弦比涡轮叶栅端壁区亚声速流动及换热,采用基于线性涡黏假设的V2F模型开展了数值模拟.结果表明:涡轮叶栅流动中存在马蹄涡、通道涡、压力侧角涡、吸力侧角涡等多种复杂涡系结构,其中马蹄涡与通道涡是涡轮叶栅二次损失的主要来源.端壁换热与马蹄涡及通道涡强度及位置直接相关,并呈现明显的分区特征.端壁极限流线结果显示,V2F模型模拟的端壁单马蹄涡分离线与实验结果吻合,优于SST (shear stress transport)k-ω模型模拟的端壁双马蹄涡分离线.V2F模型引入了新的湍流尺度,在马蹄涡及通道涡位置、端壁静压损失系数分布、叶栅出口总压损失分布及端壁Standon数分布等方面均与实验结果吻合较好,对叶栅气动损失及端壁换热有良好的预测能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号