首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moore  T.E.  Collier  M.R.  Fok  M.-C.  Fuselier  S.A.  Khan  H.  Lennartsson  W.  Simpson  D.G.  Wilson  G.R.  Chandler  M.O. 《Space Science Reviews》2003,109(1-4):351-371
Development of the low energy neutral atom (LENA) imager was originally motivated by a need to remotely sense plasma heating in the topside ionosphere, with the goal of greatly enhanced temporal resolution of an otherwise familiar phenomenon. During ground test and calibration, the LENA imager was found to respond to neutral atoms with energies well above its nominal energy range of 10–750 eV, up to at least 3–4 keV, owing to sputtering interactions with its conversion surface. On orbit, LENA has been found to respond to a ubiquitous neutral atom component of the solar wind, to the neutral atoms formed by magnetosheath interactions with the geocorona during periods of high solar wind pressure, and to the interstellar neutral atoms flowing through the heliosphere during the season of maximal relative wind velocity between spacecraft and interstellar medium. LENA imaging has thus emerged as a promising new tool for studying the interplanetary medium and its interaction with the magnetosphere, in addition to the ionospheric heating and outflow that result from this interaction. LENA emissions from the ionosphere consist of a fast component that can be observed at high altitudes, and slower components that evidently create a quasi-trapped extended superthermal exosphere. The more energetic emissions are responsive to solar wind energy inputs on time scales of a few minutes.  相似文献   

2.
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0–500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of 1 cm2 effective area each) and angular resolution (6°×18°) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.Deceased.  相似文献   

3.
Global ena Image Simulations   总被引:2,自引:0,他引:2  
Fok  M.-C.  Moore  T.E.  Wilson  G.R.  Perez  J.D.  Zhang  X.X.  Brandt  P. C:Son  Mitchell  D.G.  Roelof  E.C.  Jahn  J.-M.  Pollock  C.J.  Wolf  R.A. 《Space Science Reviews》2003,109(1-4):77-103
The energetic neutral atom (ENA) images obtained by the ISEE and POLAR satellites pointed the way toward global imaging of the magnetospheric plasmas. The Imager for Magnetopause to Aurora Global Exploration (IMAGE) is the first mission to dedicate multiple neutral atom imagers: HENA, MENA and LENA, to monitor the ion distributions in high-, medium- and low-energy ranges, respectively. Since the start of science operation, HENA, MENA and LENA have been continuously sending down images of the ring current, ionospheric outflow, and magnetosheath enhancements from high pressure solar wind. To unfold multiple-dimensional (equal or greater than 3) plasma distributions from 2-dimensional images is not a trivial task. Comparison with simulated ENA images from a modeled ion distribution provides an important basis for interpretation of features in the observed images. Another approach is to develop image inversion methods to extract ion information from ENA images. Simulation studies have successfully reproduced and explained energetic ion drift dynamics, the transition from open to closed drift paths, and the magnetosheath response to extreme solar wind conditions. On the other hand, HENA has observed storm-time ion enhancement on the nightside toward dawn that differs from simple concepts but can be explained using more sophisticated models. LENA images from perigee passes reveal unexpected characteristics that now can be interpreted as evidence for a transient superthermal exospheric component that is gravitationally-influenced if not bound. In this paper, we will report ENA simulations performed during several IMAGE observed events. These simulations provide insight and explanations to the ENA features that were not readily understandable previously.  相似文献   

4.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   

5.
We use energy spectra of anomalous cosmic rays (ACRs) measured with the Cosmic Ray instrument on the Voyager 1 and 2 spacecraft during the period 1994/157-313 to determine several parameters of interest to heliospheric studies. We estimate that the strength of the solar wind termination shock is 2.42 (–0.08, +0.04). We determine the composition of ACRs by estimating their differential energy spectra at the shock and find the following abundance ratios: H/He = 5.6 (–0.5, +0.6), C/He = 0.00048 ± 0.00011, N/He = 0.011 ± 0.001, O/He = 0.075 ± 0.006, and Ne/He = 0.0050 ± 0.0004. We correlate our observations with those of pickup ions to deduce that the long-term ionization rate of neutral nitrogen at 1 AU is 8.3 × 10–7 s–1 and that the charge-exchange cross section for neutral N and solar wind protons is 1.0 × 10–15 cm2 at 1.1 keV. We estimate that the neutral C/He ratio in the outer heliosphere is 1.8(–0.7, +0.9) × 10–5. We also find that heavy ions are preferentially injected into the acceleration process at the termination shock.  相似文献   

6.
The Toroidal Imaging Mass-Angle Spectrograph (TIMAS) for the polar mission   总被引:1,自引:0,他引:1  
The science objectives of the Toroidal Imaging Mass-Angle Spectrograph (TIMAS) are to investigate the transfer of solar wind energy and momentum to the magnetosphere, the interaction between the magnetosphere and the ionosphere, the transport processes that distribute plasma and energy throughout the magnetosphere, and the interactions that occur as plasma of different origins and histories mix and interact. In order to meet these objectives the TIMAS instrument measures virtually the full three-dimensional velocity distribution functions of all major magnetospheric ion species with one-half spin period time resolution. The TIMAS is a first-order double focusing (angle and energy), imaging spectrograph that simultaneously measures all mass per charge components from 1 AMU e–1 to greater than 32 AMU e–1 over a nearly 360° by 10° instantaneous field-of-view. Mass per charge is dispersed radially on an annular microchannel plate detector and the azimuthal position on the detector is a map of the instantaneous 360° field of view. With the rotation of the spacecraft, the TIMAS sweeps out very nearly a 4 solid angle image in a half spin period. The energy per charge range from 15 eV e–1 to 32 keV e–1 is covered in 28 non-contiguous steps spaced approximately logarithmically with adjacent steps separated by about 30%. Each energy step is sampled for approximately 20 ms;14 step (odd or even) energy sweeps are completed 16 times per spin. In order to handle the large volume of data within the telemetry limitations the distributions are compressed to varying degrees in angle and energy, log-count compressed and then further compressed by a lossless technique. This data processing task is supported by two SA3300 microprocessors. The voltages (up to 5 kV) for the tandem toroidal electrostatic analyzers and preacceleration sections are supplied from fixed high voltage supplies using optically controlled series-shunt regulators.  相似文献   

7.
More than 20 years ago, in 1972, anomalous flux increases of helium and heavy ions were discovered during solar quiet times. These flux increases in the energy range<50 MeV/nucleon showed peculiar elemental abundances and energy spectra, e.g. a C/O ratio0.1 around 10 MeV/nucleon, different from the abundances of solar energetic particles and galactic cosmic rays. Since then, this anomalous cosmic ray component (ACR) has been studied extensively and at least six elements have been found (He,N,O,Ne,Ar,C) whose energy spectra show anomalous increases above the quiet time solar and galactic energetic particle spectrum. There have been a number of models proposed to explain the ACR component. The presently most plausible theory for the origin of ACR ions identifies neutral interstellar gas as the source material. After penetration into the inner heliosphere, the neutral particles are ionized by solar UV radiation and by charge exchange reactions with the solar wind protons. After ionization, the now singly charged ions are picked up by the interplanetary magnetic field and are then convected with the solar wind to the outer solar system. There, the ions are accelerated to high energies, possibly at the solar wind termination shock, and then propagate back into the inner heliosphere. A unique prediction of this model is that ACR ions should be singly ionized. Meanwhile, several predictions of this model have been verified, e.g. low energy pick-up ions have been detected and the single charge of ACR ions in the energy range at MeV/nucleon has been observed. However, some important aspects such as, for example, the importance of drift effects for the acceleration and propagation process and the location of the acceleration site are still under debate. In this paper the present status of experimental and theoretical results on the ACR component are reviewed and constraints on the acceleration process derived from the newly available ACR ionic charge measurements will be presented. Possible new constraints provided by correlative measurements at high and low latitudes during the upcoming solar pole passes of the ULYSSES spacecraft in 1994 and 1995 will be discussed.  相似文献   

8.
Nine coronal mass ejections (CMEs) have been detected in the solar wind by the Ulysses plasma experiment between 31° and 61° South. One of these events, which was also a magnetic cloud, was directly associated with an event observed by the soft X-ray telescope on Yohkoh in which large magnetic loops formed in the solar corona directly beneath Ulysses. This association suggests that the flux rope topology of the magnetic cloud resulted from reconnection between the legs of neighboring magnetic loops within the rising CME. The average CME speed (740 km s–1) at these latitudes was comparable to that of the normal solar wind there and is much greater than average CME speeds observed either in the solar wind in the ecliptic plane or in the corona close to the Sun. We suggest that the same basic acceleration process applies to both slow CMEs and the normal solar wind at any latitude.  相似文献   

9.
The Near-Infrared Spectrometer (NIS) instrument on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft is designed to map spectral properties of the mission target, the S-type asteroid 433 Eros, at near-infrared wavelengths diagnostic of the composition of minerals forming S asteroids. NIS is a grating spectrometer, in which light is directed by a dichroic beam-splitter onto a 32-element Ge detector (center wavelengths, 816–1486 nm) and a 32-element InGaAs detector (center wavelengths, 1371–2708 nm). Each detector reports a 32-channel spectrum at 12-bit quantization. The field-of-view is selectable using slits with dimensions calibrated at 0.37° × 0.76° (narrow slit) and 0.74° × 0.76° (wide slit). A shutter can be closed for dark current measurements. For the Ge detector, there is an option to command a 10x boost in gain. A scan mirror rotates the field-of-view over a 140° range, and a diffuse gold radiance calibration target is viewable at the sunward edge of the field of regard. Spectra are measured once per second, and up to 16 can be summed onboard. Hyperspectral image cubes are built up by a combination of down-track spacecraft motion and cross-track scanning of the mirror. Instrument software allows execution of data acquisition macros, which include selection of the slit width, number of spectra to sum, gain, mirror scanning, and an option to interleave dark spectra with the shutter closed among asteroid observations. The instrument was extensively characterized by on-ground calibration, and a comprehensive program of in-flight calibration was begun shortly after launch. NIS observations of Eros will largely be coordinated with multicolor imaging from the Multispectral Imager (MSI). NIS will begin observing Eros during approach to the asteroid, and the instrument will map Eros at successively higher spatial resolutions as NEAR's orbit around Eros is lowered incrementally to 25 km altitude. Ultimate products of the investigation will include composition maps of the entire illuminated surface of Eros at spatial resolutions as high as 300 m.  相似文献   

10.
Energy flow in various large-scale processes of the Earth's magnetosphere is examined. This energy comes from the solar wind, via the dawn-to-dusk convection electric field, a field established primarily by magnetic merging but with viscous-like boundary interaction as a possible contributor. The convection field passes about 5 × 1011 W to the near-Earth part of the plasma sheet, and also moves the plasma earthward. In addition, 1–3 × 1011 W are given to the complex system of the Birkeland currents: about 4 × 1010 of this, on the average, goes to parallel acceleration, chiefly of auroral electrons, about 2–3 times that amount to joule heating of the ionosphere, and the rest heats the ring current. The ring current stores energy (mainly as kinetic energy of particles) of the order of 2 × 1015 J, and this value rises and decays during magnetic storms, on time scales ranging from a fraction of a day to several days. The tail can store comparable amounts as magnetic energy, and appreciable fractions of its energy may be released in substorms, on time scales of tens of minutes. The sporadic power level of such events reaches the order of 3 × 1012 W. The role of magnetic merging in such releases of magnetic energy is briefly discussed, as is the correlation between properties of the solar wind and magnetospheric power levels.  相似文献   

11.
Our picture of modulation in the inner heliosphere has been greatly affected by observations from the Ulysses mission, which since 1992 has provided the first comprehensive exploration of modulation as a function of latitude from 80° S to 80° N heliographic latitude. Among the principal findings for the inner heliosphere are: a) the cosmic ray intensity depends only weakly on heliographic latitude; b) for the nuclear components, and especially for the anomalous components, the intensity increases towards the poles, qualitatively consistent with predictions of drift models for the current sign of the solar magnetic dipole; c) no change in the level of modulation was observed across the shear layer separating fast polar from slow equatorial solar wind near 1 AU; d) 26-day recurrent variations in the intensity persist to the highest latitudes, even in the absence of clearly correlated signatures in the solar wind and magnetic field; e) the surface of symmetry of the modulation in 1994-95 was offset about 10° south of the heliographic equator; f) the intensity of electrons and of low energy (< 100 MeV) protons showed essentially no dependence on heliographic latitude.  相似文献   

12.
The spectra and anisotropies of ions 30 keV have been measured by the Low Energy Charged Particle experiment on Voyagers 1 and 2 in the vicinity of interplanetary shocks between radial distances of 1–55 AU and heliographic latitudes 11° S-32° N. The spectra and anisotropies associated with a recent corotating (CIR) event at low latitude observed at Voyager 2 (36.6 AU, –9°) are similar to those of another event at high latitude observed at Voyager 1 (49.8 AU, 33.5°). An earlier CIR event observed at Voyager 2 (14 AU) associated with the previous solar cycle produced spectra and anisotropies remarkably similar to the more recent events. The anisotropies are used to calculate the solar wind velocity downstream of shocks where possible using the Compton-Getting effect, allowing the determination of previously unknown velocities at the locations of Voyager 1. For the large shock event observed at Voyagers 1 (38 AU, 30°) and 2 (29 AU, 3°) in mid-1989, the postshock spectra and anisotropies are well described by convected power law distributions. The Voyager 1 and 2 postshock spectra 4 days after the shock passage are nearly identical. The preshock anisotropies at low energy are similar, despite differences in the magnetic field orientation and the low energy spectrum. We find that the 30 keV ion anisotropies are generally well described by convective distributions downstream but not in the upstream region for shocks and many other shock events at Voyagers 1 and 2.  相似文献   

13.
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind’s interaction with solar system obstacles like Earth’s magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1–2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles.The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds (\(\sim1~\mbox{keV}\)) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers.Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth’s exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV “lobster-eye” telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers.  相似文献   

14.
The abundance of 3He in the present day local interstellar cloud (LIC) and in the sun has important implications for the study of galactic evolution and for estimating the production of light nuclei in the early universe. Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is used to measure the isotopic ratio of helium (3He/4He = ) both in the solar wind and the local interstellar cloud. For the solar wind, the unique high-latitude orbit of Ulysses allows us to study this ratio in the slow and highly dynamic wind in the ecliptic plane as well as the steady high-latitude wind of the polar coronal holes. The 3He+/4He+ ratio in the local cloud is derived from the isotopic ratio of pickup helium measured in the high-speed solar wind. In the LIC the ratio is found to be (2.48 -0.62 +0.68 ) × 10-4 with the 1- uncertainty resulting almost entirely from statistical error. In the solar wind, is determined with great statistical accuracy but shows systematic differences between fast and slow solar wind streams. The slow wind ratio is variable. Its weighted average value (4.08 ± 0.25) × 10-4 is, within uncertainties, in agreement with the Apollo SWC results. The high wind ratio is less variable but smaller. The average in the fast wind is (3.3 ± 0.3) × 10-4.  相似文献   

15.
Energy release into coronal plasmas is observable in the forms of heating and acceleration. In flares and active stars, heating and acceleration have been found to be related as indicated by an approximately constant ratio of microwave (synchrotron) and soft X-ray (thermal) emission. The discovery suggests a flare-like heating process for the quiescent coronae of active stars.The energy release in solar flares involves several time scales: (i) The largest is the rate of homologous flares in an active region of the order of one per five hours. (ii) Hard X-ray andH emissions suggest a total flare duration of ten minutes, (iii) with individual episodes of contiguous acceleration of one minute. (iv) Elementary hard X-ray peaks have 5–10 s duration, corresponding to groups of beams observable as type III radio bursts. (v) The effective injection time of these beams is of the order 0.1 s. (vi) The smaller time scale is observed in narrowband radio spikes in the 0.2–8 GHz range with durations of a few times 0.01 s.  相似文献   

16.
The basic physical processes that lead to the long-term modulation of cosmic rays by the solar wind have been known for many years. However our knowledge of the structure of the heliosphere, which determines which processes are most important for the modulation, and of the variation of this structure with time and solar activity level is still incomplete. Study of the modulation provides a tool for probing the scale and structure of the heliosphere. While the Pioneer and Voyager spacecraft are surveying the radial structure and extent of the heliosphere at modest heliographic latitudes, theUlysses mission is the first to undertake a nearly complete scan of the latitudinal structure of the modulated cosmic ray intensity in the inner heliosphere (R<5.4 AU).Ulysses will reach latitudes of 80°S in September 1994 and 80°N in July 1995 during the approach to minimum activity in the 11 year solar cycle. We present a first report of measurements extending to latitudes of 52°S, which show surprisingly little latitudinal effect in the modulated intensities and suggest that at this time modulation in the inner heliosphere may be much more spherically symmetric than had generally been believed based upon models and previous observations.  相似文献   

17.
Gloeckler  G.  Cain  J.  Ipavich  F.M.  Tums  E.O.  Bedini  P.  Fisk  L.A.  Zurbuchen  T.H.  Bochsler  P.  Fischer  J.  Wimmer-Schweingruber  R.F.  Geiss  J.  Kallenbach  R. 《Space Science Reviews》1998,86(1-4):497-539
The Solar Wind Ion Composition Spectrometer (SWICS) and the Solar Wind Ions Mass Spectrometer (SWIMS) on ACE are instruments optimized for measurements of the chemical and isotopic composition of solar and interstellar matter. SWICS determines uniquely the chemical and ionic-charge composition of the solar wind, the thermal and mean speeds of all major solar wind ions from H through Fe at all solar wind speeds above 300 km s−1 (protons) and 170 km s−1 (Fe+16), and resolves H and He isotopes of both solar and interstellar sources. SWICS will measure the distribution functions of both the interstellar cloud and dust cloud pickup ions up to energies of 100 keV e−1. SWIMS will measure the chemical, isotopic and charge state composition of the solar wind for every element between He and Ni. Each of the two instruments uses electrostatic analysis followed by a time-of-flight and, as required, an energy measurement. The observations made with SWICS and SWIMS will make valuable contributions to the ISTP objectives by providing information regarding the composition and energy distribution of matter entering the magnetosphere. In addition, SWICS and SWIMS results will have an impact on many areas of solar and heliospheric physics, in particular providing important and unique information on: (i) conditions and processes in the region of the corona where the solar wind is accelerated; (ii) the location of the source regions of the solar wind in the corona; (iii) coronal heating processes; (iv) the extent and causes of variations in the composition of the solar atmosphere; (v) plasma processes in the solar wind; (vi) the acceleration of particles in the solar wind; (vii) the physics of the pickup process of interstellar He in the solar wind; and (viii) the spatial distribution and characteristics of sources of neutral matter in the inner heliosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
We present observations of energetic ions from the Ulysses COSPIN Low Energy Telescope in the mid and high-latitude regions of the heliosphere prior to and during the first polar pass of the Ulysses spacecraft. After the encounter with Jupiter, Ulysses started on its journey out-of-the-ecliptic. Between 13°S and 29°S the spacecraft sampled the solar wind from both the streamer belt and the polar coronal hole. Here, co-rotating magnetic structures with forward and reverse shocks and containing accelerated energetic ions were observed.At latitudes greater than 29°S, Ulysses was completely immersed in the solar wind from the polar coronal hole. Here the co-rotating magnetic structures were weaker, and in general had only reverse shocks, but were still capable of accelerating the energetic ions, albeit with reduced intensity. The most recent results show that beyond 50°S, very few if any, reverse shocks are observed. However, accelerated ions from magnetic interaction regions are still observed. We report also on an intensity enhancement at 50°S due to the passage of a high-latitude CME.  相似文献   

19.
Recent observational and theoretical studies of interplanetary shock waves associated with solar flares are reviewed. An attempt is made to outline the framework for the genesis, life and demise of these shocks. Thus, suggestions are made regarding their birth within the flare generation process, MHD wave propagation through the chromosphere and inner corona, and maturity to fully-developed coronal shock waves. Their subsequent propagation into the ambient interplanetary medium and disturbing effects within the solar wind are discussed within the context of theoretical and phenomenological models. The latter — based essentially on observations — are useful for a limited interpretation of shock geometric and kinematic characteristics. The former — upon which ultimate physical understanding depends — are used for clarification and classification of the shocks and their consequences within the solar wind. Classification of limiting cases of blast-produced shocks (as in an explosion) or longer lasting ejecta (or piston-driven shocks) will hopefully be combined with the study of the flare process itself.The theoretical approach, in spite of its contribution to clarification of various concepts, contains some fundamental limitations and requires further study. Numerical simulations, for example, depend upon a non-unique set of multi-parameter initial conditions at or near the Sun. Additionally, the subtle but important influence of magnetic fields upon energy transport processes within the solar wind has not been considered in the numerical simulation approach. Similarity solutions are limited to geometrical symmetries and have not exploited their potential beyond the special cases of the blast and the constant-velocity, piston-driven shock waves. These continuum fluid studies will probably require augmentation or even replacement by plasma kinetic theory in special situations when observations indicate the presence of anomalous transport processes. Presently, for example, efforts are directed toward identification of detailed shock structures (as in the case of Earth's bow shock) and of the disturbed solar wind (such as the piston).Further progress is expected with extensive in situ and remote monitoring of the solar wind over a wide range of heliographic radii, longitudes and latitudes.This paper is a revised and updated version of an invited review originally presented at the IUGG XV General Assembly, Moscow, U.S.S.R., 2–14 August 1971.  相似文献   

20.
The planned missions to Comet Halley, which will arrive at the nearest space of the Sun in 1986, have recently revived interest in studying solar wind interaction with comets. Several unsolved problems exist and the most urgent of them are as follows:
  1. The character of the solar wind interaction with comets: bow shocks and contact surface formation near comets; similarities and differences of solar- wind interaction with comets and with Venus. The differences are probably associated with a great extension of neutral atmospheres of comets (due to a practical lack of cometary gravitation) and the ‘loading’ of the solar wind flux by cometary ions during the interaction.
  2. The anomalous ionization in cometary heads.
  3. The problem of the anamalously high accelerations of ions in the plasma tails of comets.
  4. The variability of plasma structures observed in cometary tails.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号