共查询到17条相似文献,搜索用时 62 毫秒
1.
引入基于支持向量机(SVM)的数据挖掘技术,提出了基于SVM的转静碰摩部位诊断知识获取.首先,基于带机匣的航空发动机转子实验器,模拟了4个碰摩部位的碰摩实验,利用机匣4个部位的应变测试,获取了4个碰摩部位和4个测点的大量实验数据;然后提出了一种基于支持向量聚类(SVC)的诊断知识规则提取方法.在该方法中,利用SVC算法得到特征选取后样本的聚类分配矩阵,最后根据聚类分配矩阵构建超矩形规则.为使规则更加简洁,易于解释,采用规则合并、维数约简、区间延伸等方法对超矩形规则进行进一步简化.利用基于SVM的数据挖掘方法,从大量的碰摩部位实验数据中提取出了转静碰摩部位诊断的知识规则,并进行了相应解释和验证,规则识别率达到了99%以上,表明了该方法的正确有效性. 相似文献
2.
基于机匣应变信号的航空发动机转静碰摩部位识别 总被引:2,自引:0,他引:2
为有效识别航空发动机转静碰摩部位,提出基于机匣应变信号的航空发动机转静碰摩部位识别技术。以应变片为敏感元件,采用沿机匣轴向、周向粘贴应变片两种实验方案,利用航空发动机转子试验器模拟大量不同碰摩部位的样本,采集航空发动机转子试验器机匣上的应变信号,提取应变的均值特征,利用支持向量机,识别不同碰摩位置。结果表明:沿机匣周向的应变均值特征可有效识别转静碰摩部位,且鲁棒性较好,且仅需在机匣的4个位置粘贴应变片即可对4个不同碰摩部位达到100%的识别率。沿机匣轴向的应变均值特征也可识别不同的碰摩部位,但识别效果不如沿机匣周向效果理想。 相似文献
3.
基于模糊支持向量机的飞机飞行动作识别 总被引:9,自引:0,他引:9
传统的支持向量机由两类扩展到多类问题时,出现不可分区域。针对飞行动作识别提出解决这一现象的模糊支持向量机。采用模糊支持向量机对某型飞机飞行动作进行识别。实际飞参数据(6种飞行动作模式)的识别结果表明,模糊支持向量机较传统的多类支持向量分类器在飞机飞行动作识别率上有显著提高。 相似文献
4.
5.
小波变换在转子系统动静件早期碰摩故障诊断中的应用 总被引:27,自引:0,他引:27
利用小波变换理论对转静件早期碰摩故障进行诊断,通过对碰摩故障的仿真结果利用D20小波进行波形分解、利用高斯小波进行小波变换,得出:它们不仅可对早期碰摩进行准确诊断,还可准确诊断进入、脱离碰摩的位置;两种分析结果完全一致,达到了互相验证,从而进一步说明利用小波变换理论对早期碰摩故障进行诊断的有效性。 相似文献
6.
基于谐波小波包和SVM的滚动轴承故障诊断方法 总被引:1,自引:0,他引:1
针对滚动轴承故障诊断问题开展研究,设计了基于谐波小波包和支持向量机(SVM)的新型诊断方法.与传统的时频特征提取方法相比,谐波小波包具有盒状频谱和无限细分的优势.首先对滚动轴承的振动数据进行谐波小波包分解,利用各频段的小波分解系数计算特征能量,归一化之后作为特征向量,为设计的多类SVM模型提供训练样本和测试样本.利用SVM的非线性映射能力,将三个二分类器相组合设计了基于二叉树的多类SVM模型,实现了对滚动轴承的故障诊断.最后,利用Case Western Reserve University电气工程实验室的滚动轴承试验台的振动数据对设计的诊断方法进行了验证.结果表明,设计的诊断方法比传统的方法具有更高的准确率. 相似文献
7.
8.
9.
时间序列广泛存在于工业、经济、军事等各个领域,时间序列预测是数据分析处理的一个重要方面。目前提出的预测模型大多基于"原始时间序列是无噪的"这一假定,而实际应用中,对时间序列去噪处理的好坏将直接影响预测的准确率,针对这一事实,使用小波分析对原始时间序列去噪。利用小波变换对时间序列进行多尺度分解,对各尺度上的细节序列使用阀值法去噪;使用支持向量机对重构后的各组小波系数进行预测并将结果融合,得到预测结果。实验结果表明,用于时间序列预测,能及时反应序列的变化趋势并具有较高的预测精度。 相似文献
10.
基于双树复小波包变换和SVM的滚动轴承故障诊断方法 总被引:1,自引:4,他引:1
针对滚动轴承故障振动信号的非平稳性和现实中难以获得大量典型故障样本的情况,提出一种基于双树复小波包变换和支持向量机(SVM)的故障诊断方法.首先通过双树复小波包变换将非平稳的振动信号分解得到不同频带的分量;然后对每个分量求其能量并归一化处理;最后将从各个频带分量中提取的能量特征参数作为支持向量机的输入来识别滚动轴承的故障类型.对试验台模拟信号(包括滚动轴承的正常状态、外圈裂纹故障、内圈裂纹故障和滚动体点蚀故障)的分析表明:该方法对所测试验信号的故障识别率达到99.5%,对比传统小波包变换与SVM结合的方法,故障识别率的准确度更高. 相似文献
11.
12.
树形结构SVMs多类分类的研究 总被引:2,自引:0,他引:2
介绍了SVM方法原理,为了将SVM在解决两类分类问题中的优越性推广至解决多类分类问题,分析构建树方法与SVM结合运用来提高SVM在进行多类分类时的训练效率的方法, 然后构造文本自动分类,实验说明该方法有较高的训练效率,并且所需的训练样本量大大降低。 相似文献
13.
对常规熟练曲线建模方法和支持向量机模型用于某型武器装备的批量生产经济性分析进行研究,着重分析了应用支持向量机进行批量生产经济性分析的具体形式以及方法特点,并给出了应用实例,结果令人满意。 相似文献
14.
基于支持向量机和蚁群算法的空间目标分类 总被引:2,自引:0,他引:2
研究了基于支持向量机的空间目标分类中核参数和误差惩罚因子的选择问题.将蚁群算法与支持向量机相结合,提出了一种自动优选支持向量机模型参数的方法,克服了以往反复试验以确定其参数的缺点.采用所提出的方法,分类正确率迭90%左右,验证了该方法的有效性. 相似文献
15.
16.
针对振动信号的非线性、非平稳性以及微弱故障特征难以提取的问题,提出了一种基于经验模态分解(EMD)、样本熵和流形学习的故障特征提取方法.该方法将EMD、样本熵和流形学习相结合.首先,利用EMD的自适应多分辨率的特点计算分解得到的IMF(固有模态函数)信号的样本熵,初步提取滚动轴承状态特征值;然后利用流形学习方法对初步的提取的滚动轴承状态特征进行进一步的提取;最后利用支持向量机(SVM)对该特征提取方法进行分类评估,并将该方法运用在滚动轴承故障诊断实验中,实验证明该特征提取方法与基于小波包样本熵的故障诊断方法相比具有很好的聚类性能,且对于SVM的分类结果可达100%,在降低了特征数据的复杂度的同时,增强了故障模式识别的分类性能,具有一定的优越性. 相似文献