首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper is to consider an influence of solar and geomagnetic activity level variations on frequency and stochastic parameters of mid-latitude ionosphere sporadic-E layer. Critical frequency of sporadic-E layer, foEs, relative excess of sporadic ionization over monthly median values, foEs  foEm/foEm, and probability of Es layer appearance, PEs, are considered. It has been found that sporadic-E layer parameters response to solar and geomagnetic activity level variations can be both positive (foEs and PEs values are increase) and negative (foEs and PEs values are decrease). In particular, sporadic-E layers response to solar and geomagnetic activity variations are different depending upon layer intensity. It is suggested that revealed differences may be associated with dissimilarity of the layers ion composition (high-intensive layers are composed from metallic ions and low intensive composed from molecular ions).  相似文献   

2.
Recent review study done jointly by 19 experts of 17 institutes shows zero trend of temperature in the upper mesosphere. In the light of this latest development, we have examined the long-term changes in electron density, [e], in this region. The study has been concentrated at 80 km. At this altitude, electrons are mainly produced by the interaction of nitric oxide, NO, by solar Ly-α. Any long-term change in this flux will affect trend of [e]. Considering this flux proportional to 10.7 cm solar flux, analysis of available 10.7 cm solar flux data from 1948 to 2003 has been made. A decreasing trend up to about 1970 and then an increasing trend are found. The over-all increasing trend of Ly-α flux during the past five decades is ∼0.17% per year. This increase also gives a ∼0.17% increasing trend per year in [e]. This non-anthropogenic increase is much less compared to the observed increase in [e] which is reported to be >0.7% per year. The observed increase in [e] of this magnitude will then, predominantly, be due to the anthropogenic effect. In zero trend in temperature, significant change in electron loss coefficient, αeff, and [NO] are unlikely to take place to cause a significant change in [e]. The increase in [e] > 0.7% per year then can be explained by considering a decreasing trend in [O2].  相似文献   

3.
Using spectral measurements of the hydroxyl airglow at the Zvenigorod station (56° N, 37° E), Moscow region, over 2000–2016, we obtained the long-term set of data comprising 1822 midnight values of the OH1 temperature in the mesopause region. These data revealed a 17-year series of its mean annual values, as well as amplitudes and phases of the first two harmonics of its annual variation. The obtained parameters were analyzed to determine statistically relevant characteristics of their long-term variations. As a result, we found that the long-term behaviour of the mean annual OH1 temperature features a small negative linear trend (?0.07 ± 0.03 K/year) over the addressed period. Besides, its dependence on solar activity is shown to be 4.1 ± 0.5 K/100 SFU. Regarding the long-term behaviour of the mean annual OH1 temperature, we revealed the existence of two oscillations with 3-year (the amplitude being 1.3 ± 0.2 K) and 4.1-year (the amplitude being 0.6 ± 0.2 K) periods. We obtained empirical relations describing year-to-year variations in the amplitudes and phases of the annual and semi-annual harmonics.  相似文献   

4.
On January 20, 2005, 7:02–7:05 UT the Aragats Multidirectional Muon Monitor (AMMM) located at 3200 m a.s.l. registered enhancement of the high energy secondary muon flux (threshold ∼5 GeV). The enhancement, lasting for 3 min, has statistical significance of ∼4σ and is related to the X7.1 flare seen by the GOES, and very fast (>2500 km/s) CME seen by SOHO, and the Ground Level Enhancements (GLE) #69 detected by the world-wide network of neutron monitors and muon detectors. The energetic and temporal characteristics of the muon signal from the AMMM are compared with the characteristics of other monitors located at the Aragats Space-Environmental Center (ASEC) and with other neutron and muon detectors. Since secondary muons with energies >5 GeV are corresponding to solar proton primaries with energies 20–30 GeV we conclude that in the episode of the particle acceleration at 7:02–7:05 UT 20 January 2005 solar protons were accelerated up to energies in excess of 20 GeV.  相似文献   

5.
An occulted solar flare occurred at about 06:07 UT on 2002, November 2. The RHESSI X-ray images show two separate parts. The lower part consists of a complete loop and the upper part a coronal source which well extends above the solar limb. The loop source shrank for about 3 min with a speed of ∼24 km s−1 during the early impulsive phase and then expanded at ∼7 km s−1, while the coronal source presented an upward motion at about 6 km s−1. We obtained the temperature map of the loop source from RHESSI image spectrum. The temperature of the loop increases with altitude, indicating that the reconnection X-point of this flare is located above the loop source. However, the apparent coronal source is the top of another independent large-scale loop.  相似文献   

6.
The average amplitude of the 27-day variation of the galactic cosmic ray anisotropy calculated based on the neutron monitors experimental data is larger in the qA > 0 period than in the qA < 0 period of solar magnetic cycle. The amplitudes of the 27-day variation of the galactic cosmic rays anisotropy do not depend on the tilt angles of the heliospheric neutral sheet for different the qA > 0 and the qA < 0 periods of solar magnetic cycle. A good correlation has been revealed between the changes of the amplitudes of the 27-day variations of the galactic cosmic ray anisotropy and intensity versus the qA > 0 and the qA < 0 periods of solar magnetic cycle.  相似文献   

7.
The spatial distribution of the vector of the Stokes parameters characterizing the radiance intensity and the radiance polarization describes the radiation field in the atmosphere. A simplified treatment of light as the scalar has only restricted application. A few studies compared previously results of the vector and scalar radiative transfer models and showed that scalar models are in error by up to 10% for many cases. Though several observational conditions were exploited, an effect of polarization on modeling of UV radiance has not been investigated yet for twilight. The paper presents a preliminary study of modeled UV radiance during twilight taking into account polarization. The intensity and the degree of linear polarization of the scattered UV radiance for two cases of the ground-based observations are discussed. In the first case, radiation incoming from the zenith for the solar zenith angles (SZA) from 90° to 98° is under investigation. Radiation in the solar principal plane for the beginning of twilight (SZA = 90.1°) was calculated in the second case. The study showed that the UV radiation field in the twilight atmosphere can be handled correctly only using the vector theory. The errors of scalar radiative transfer strongly depend on wavelength, line of an observation and solar position. The revealed distortion of the zenith radiance caused by using of the scalar approximation reaches maximum of 15% at 340 nm for the solar zenith angle (SZA) equal to 98°. The shorter wavelengths have the smaller errors, about 5% at 305 nm for SZA = 98°, due to the larger part of the single scattered radiance. The error of the scalar modeling may be as large as −17% for radiance incoming from the horizon for SZA = 90.1°. Scalar radiative transfer models underestimate the integral intensity in the principal plane up to 3–4% ± 0.5% at SZA = 90.1° for wavelengths from 320 to 340 nm. This should be taken into account in problems of radiative budget estimation and remote sensing of the atmosphere exploiting the twilight period.  相似文献   

8.
Understanding solar influence on the Earth’s climate requires a reconstruction of solar irradiance for the pre-satellite period. Considerable advances have been made in modelling the irradiance variations at wavelengths longer than 200 nm. At shorter wavelengths, however, the LTE approximation usually taken in such models fails, which makes a reconstruction of the solar UV irradiance a rather intricate problem. We choose an alternative approach and use the observed SUSIM UV spectra to extrapolate available models to shorter wavelengths.  相似文献   

9.
The total electron content (TEC) measurements from a network of GPS receivers were analyzed to investigate the storm time spatial response of ionosphere over the Indian longitude sector. The GPS receivers from the GPS Aided Geo Augmented Navigation (GAGAN) network which are uniquely located around the ∼77°E longitude are used in the present study so as to get the complete latitudinal coverage from the magnetic equator to low mid-latitude region. We have selected the most intense storms but of moderate intensity (−100 nT < Dst < −50 nT) which occurred during the unusually extremely low solar activity conditions in 2007–2009. Though the storms are of moderate intensity, their effects on equatorial to low mid-latitude ionosphere are found to be very severe as TEC deviations are more than 100% during all the storms studied. Interesting results in terms of spatial distribution of positive/negative effects during the main/early recovery phase of storms are noticed. The maximum effect was observed at crest region during two storms whereas another two storms had maximum effect near the low mid-latitude region. The associated mechanisms like equatorial electrodynamics and neutral dynamics are segregated and explained using the TIMED/GUVI and EEJ data during these storms. The TEC maps are generated to investigate the storm time development/inhibition of equatorial ionization anomaly (EIA).  相似文献   

10.
An East–West one-dimensional radio interferometer array consisting of 5 parabolic dish antennas has been set-up at Cachoeira Paulista, Brazil (Longitude: 45°0′20″W, Latitude: 22°41′19″S) for observations of Sun and some of the strong sidereal sources by the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil. This is Phase-1 of the proposed Brazilian Decimetre Array (BDA) and can be operated at any frequency in the range 1.2–1.7 GHz. The instrument is functional since November 2004 onwards at 1.6 GHz. The angular and temporal resolution at the above frequency range are ∼3′ and 100 ms, respectively. We present here the initial solar observations carried out with this array.  相似文献   

11.
Equilibrium models of diffuse interstellar material (ISM) near the Sun show a range of cloud densities, ionization, and temperatures which are consistent with data, although the local ISM must be inhomogeneous over ∼2 pc scales. The ISM close to the Sun has properties that are consistent with the sheetlike warm neutral (and partially ionized) gas detected in the Arecibo Millennium Survey. Local interstellar magnetic fields are poorly understood, but data showing weak polarization for nearby stars indicate dust may be trapped in fields or currents in the heliosheath nose region. Implications of this dust capture are widespread, and may impact the interpretation of the cosmic microwave background data. Observations of interstellar H0 inside of the solar system between 1975 and 2000 do not suggest any variation in the properties or structure of local interstellar H0 over distance scales of ∼750 AU to within the uncertainties.  相似文献   

12.
The results from direct ground-based solar UV irradiance measurements and the total ozone content (TOC) over Stara Zagora (42° 25′N, 25° 37′E), Bulgaria are presented. During the period 1999–2003 the TOC data show seasonal variations, typical for the middle latitudes – maximum in the spring and minimum in the autumn. The comparison between TOC ground-based data and Global Ozone Monitoring Experiment (GOME) satellite-borne ones shows a seasonal dependence of the differences between them.A strong negative relationship between the total ozone and the 305 nm wavelength irradiance was found. The dependence between the two variables is significant (r = −0.62 ± 0.18) at 98% confidence level.The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2.3%. The eye-damaging doses are more influenced by the TOC changes and in this case RAF = −2.7%.The amount of these biological doses depended on the solar altitude over the horizon. This dependence was not so strong when the total ozone content in the atmosphere was lower.  相似文献   

13.
Stratospheric electrical conductivity measurements have been made from high altitude research balloons at various locations around the world for more than 40 years. In the stratosphere, conductivity changes may indicate changes in aerosol or water vapor content. In this paper, we will compare the short term variation amplitude in data taken at several latitudes from equatorial to polar cap. Short term variations that occur on time scales of weeks to months (105–107 s) can be attributed to Forbush decreases, geomagnetic storms, aerosol injections by volcanos and forest fires, etc. Variations with time scales of minutes to days (103–105 s) can have amplitudes of a factor of ∼2 or more at high magnetic latitude. The variance at equatorial latitude is much smaller. The sources of these fluctuations and the latitude gradient remain unknown. Variations of all origins completely obscure any long-term climatic trend in the data taken in the previous four decades at both mid and high latitude.  相似文献   

14.
Novel measurements of the seasonal variability in mesospheric temperature at low-latitudes have been obtained from Maui, Hawaii (20.8°N, 156.2°W) during a 25-month period from October 2001 to January 2004. Independent observations of the OH (6, 2) Meinel band (peak height ∼87 km) and the O2 (0–1) atmospheric band emission (∼94 km) were made using the CEDAR Mesospheric Temperature Mapper. The data revealed a coherent oscillation in emission intensity and rotational temperature with a well-defined periodicity of 181 ± 7 days. The amplitude of this oscillation was determined to be ∼5–6 K in temperature and ∼8–9% in intensity for both the OH and O2 data sets. In addition, a strong asymmetry in the shape of the oscillation was also observed with the spring maximum significantly larger than the fall peak. These data provide new evidence in support of a semi-annual-oscillation in mesospheric temperature (and airglow emission intensities) and help quantify its seasonal characteristics.  相似文献   

15.
The hysteresis effect for small energies of galactic cosmic rays is due to two effects. The first is the same as for neutron monitor energies – the delay of the interplanetary processes responsible for cosmic ray modulation with respect to the initiating solar processes, according to the effective velocity of solar wind and shock waves propagation. Then, the observed cosmic ray intensity is connected to the solar activity variations during many months before the time of cosmic ray measurement. The second is caused by the time delay of small energy cosmic ray diffusion from the boundary of modulation region to the Earth’s orbit. The model describing the connection between solar activity variation and cosmic ray convection–diffusion global modulation for neutron monitor energies is here developed by taking into account also the time-lag of the small energy particle diffusion in the Heliosphere. We use theoretical results on drifts and analytically approximate the dependences of drifts from tilt angle, and take into account the dependence from the sign of primary particles, and from the sign of polar magnetic field (A > 0 or A < 0). The obtained results are applied on proton and alpha-particle satellite data. We analyze satellite 5-min data of proton fluxes with energies >1 MeV, >2 MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >60 MeV, >100 MeV, and in intervals 10–30 MeV, 30–60 MeV, and 60–100 MeV during January 1986–December 1999. We exclude periods with great cosmic ray increases caused by particle acceleration in solar flare events. Then, we determine monthly averaged fluxes, as well as 5-month and 11-month smoothed data. We analyze also satellite 5-min data on alpha-particle fluxes in the energy intervals 60-160 MeV, 160–260 MeV and 330–500 MeV during January 1986–May 2000. We correct observation data for drifts and then compare with what is expected according to the convection–diffusion mechanism. We assume different dimensions of the modulation region (by the time propagation X0 of solar wind from the Sun to the boundary of modulation region), for X0 values from 1 to 60 average months, by one-month steps. For each value of X0 we determine the correlation coefficient between variations of expected and observed cosmic ray intensities (the estimation of cosmic ray intensities values is given in Section 3 by Eq. (9), and the determination of correlation and regression coefficients in Section 3 by Eq. (8)). The dimension of modulation region is determined by the value of X0 max, for which the correlation coefficient reaches the maximum value. Then the effective radial diffusion coefficient and residual modulation in small energy region can be estimated.  相似文献   

16.
The characteristics of nighttime ionospheric scintillations measured at the L-band frequency of 1.575 GHz over Dibrugarh (27.5°N, 95°E, MLAT  17°N, 43° dip) during the ascending half of the solar cycle 24 from 2010 to 2014 have been investigated and the results are presented in this paper. The measurement location is within or outside the zone of influence of the equatorial ionization anomaly depending on solar and geomagnetic activity. Maximum scintillation is observed in the equinoxes irrespective of solar activity with clear asymmetry between March and September. The occurrence frequency in the solstices shifts from minimum in the June solstice in low solar activity to a minimum in the December solstice in high solar activity years. A significant positive correlation of occurrence of scintillations in the June solstice with solar activity has been observed. However, earlier reports from the Indian zone (~75°E) indicate negative or no correlation of scintillation in June solstice with solar activity. Scintillations activity/occurrence in solstices indicates a clear positive correlation with Es recorded simultaneously by a collocated Ionosonde. In equinoxes, maximum scintillations occur in the pre-midnight hours while in solstices the occurrence frequency peaks just after sunset. The incidence of strong scintillations (S4  0.4) increases with increase in solar activity. Strong (S4  0.4) ionospheric scintillations accompanied by TEC depletions in the pre-midnight period is attributed to equatorial irregularities whereas the dusk period scintillations are related to the sporadic-E activity. Present results thus indicate that the current location at the northern edge of the EIA behaves as low as well as mid-latitude location.  相似文献   

17.
We have developed a method to evaluate the spectrum of solar energetic protons at the top of the Earth’s atmosphere from the measurements of our balloon cosmic ray experiment. By using the Monte Carlo PLANETOCOSMICS code based on Geant4 we compute the interaction of solar protons [10 MeV–10 GeV] with the Earth’s atmosphere. We obtain the angular and energy distributions of secondary particles (p, e, e+, photons, muons) at different atmospheric levels as a function of primary proton spectra. By comparing the calculated depth dependence of the particle flux with the data obtained by our balloon experiment we can deduce the parameters of the solar proton spectrum that best fit the observations. In this paper we discuss our solar proton spectrum estimation method, and present results of its application to selected solar proton events from 2001 to 2005.  相似文献   

18.
This paper presents the method for calculation of DC electric field in the atmosphere and the ionosphere generated by model distribution of external electric current in the lower atmosphere. Appearance of such current is associated with enhancement of seismic activity that is accompanied by emanation of soil gases into the atmosphere. These gases transfer positive and negative charged aerosols. Atmospheric convection of charged aerosols forms external electric current, which works as a source of conductivity current in the atmosphere–ionosphere electric circuit. It is shown that DC electric field generated in the ionosphere by this current reaches up to 10 mV/m, while the long-term vertical electric field disturbances excited near the Earth surface do not exceed 100 V/m. Such limitation of the near-ground field is caused by the formation of potential barrier for charged particles at the Earth surface in a process of their transport from soil to atmosphere.  相似文献   

19.
Starting from 2008 experimental facilities of the Aragats Space Environmental Center (ASEC) routinely measure time series of secondary cosmic ray fluxes. At these years of the minimum of solar activity we analyze the new high-energy phenomena in the terrestrial atmosphere. Namely, Thunderstorm Ground Enhancements (TGEs) and Extensive Cloud Showers (ECSs). Several new particle detectors were designed and fabricated having lower energy threshold to detect particle fluxes from the thunderclouds; some of them have possibility to distinguish charged and neutral fluxes. During 2008–2012 years ASEC detectors located at Aragats, Nor Amberd and Yerevan were detected ∼300 TGE enhancements. Amplitude of majority of them is less than 5%; however, 13 TGEs have amplitude exceeding 20%. The maximal value of observed enhancement was 271% (September 19, 2009). The paper summarizes five-years study of the TGEs on Aragats. The statistical analysis revealing the month and day-of-time distributions of TGE events, as well as the amplitude and event duration diagrams are presented.  相似文献   

20.
We study a solar flare hard X-ray (HXR) source observed by the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) in which the HXR emission is almost entirely in a coronal loop so dense as to be collisionally thick at electron energies up to ∼45−60 keV. This contrasts with most events previously reported in which the HXR emission is primarily from the loop footpoints in the collisionally dense chromosphere. In particular, we show that the high loop column densities inferred from the GOES and RHESSI soft X-ray emission measure and the volume of the flare loop are consistent with the coronal thick-target interpretation of the HXR images and spectra. The high column densities observed already at the very beginning of the impulsive phase are explained by chromospheric evaporation during a preflare which, as Nobeyama 17 GHz radio images reveal, took place in the same set of nested loops as the main flare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号