共查询到20条相似文献,搜索用时 0 毫秒
1.
X. Wang J.K. ShiG.J. Wang Y. Gong 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity. 相似文献
2.
M.C. Mbambo Lee-Anne McKinnell J.B. Habarulema 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
This paper presents an investigation into the variability and predictability of the maximum height of the ionospheric F2 layer, hmF2 over the South African region. Data from three South African stations, namely Madimbo (22.4°S, 26.5°E, dip angle: −61.47°), Grahamstown (33.3°S, 26.5°E, dip angle: −64.08°) and Louisvale (28.5°S, 21.2°E, dip angle: −65.44°) were used in this study. The results indicate that hmF2 shows a larger variability around midnight than during the daytime for all seasons. Monthly median hmF2 values were used in all cases and were compared with predictions from the IRI-2007 model, using the URSI (Union Radio-Scientifique Internationale) coefficient option. The analysis covers the diurnal and seasonal hourly hmF2 values for the selected months and time sectors e.g. January, July, April and October for 2003 and 2005. The time ranges between (03h00–23h00 UT; LT = UT + 2h) representing the local sunrise, midday, sunset and midnight hours. The time covers sunrise, midday, sunrise, and midnight hours (03–06h00 UT, 07–11h00 UT, sunrise 16–18h00 UT and 22–23h00 UT; LT = UT + 2h). The dependence of the results on solar activity levels was also investigated. The IRI-2007 predictions follow fairly well the diurnal and seasonal variation patterns of the observed hmF2 values at all the stations. However, the IRI-2007 model overestimates and underestimates the hmF2 value during different months for all the solar activity periods. 相似文献
3.
S.O. Ikubanni J.O. Adeniyi O.K. Obrou 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
We have employed the hourly values of the ionospheric F-region critical frequency (foF2) obtained from Ouagadougou ionosonde, Burkina Faso (geographic coordinates 12° N, 1.8° W) during the interval of 1985–1995 (solar cycle 22) and solar radio flux of 10 cm wavelength (F10.7) to develop a local model (LM) for the African low-latitude station. The model was developed from regression analysis method, using the two-segmented regression analysis. We validated LM with foF2 data from Korhogo observatory, Cote d’Ivorie (geographical coordinates 9.3° N, 5.4° W). LM as well as the International Reference Ionosphere (IRI) agrees well with observations. LM gave some improvement on the IRI-predicted foF2 values at the sunrise (06 LT) at all solar flux levels and in all seasons except June solstice. The performance of the models at the representing the salient features of the equatorial foF2 was presented. Considering daytime and nighttime performances, LM and IRI are comparable in low solar activity (LSA), LM performed better than IRI in moderate solar activity (MSA), while IRI performed better than LM in high solar activity (HSA). CCIR has a root mean square error (r.m.s.e), which is only 0.10 MHz lower than that of LM while LM has r.m.s.e, which is about 0.05 MHz lower than that of URSI. In general, our result shows that performance of IRI, especially the CCIR option of the IRI, is quite comparable with the LM. The improved performance of IRI is a reflection of the numerous contributions of ionospheric physicists in the African region, larger volume of data for the IRI and the diversity of data sources, as well as the successes of the IRI task force activities. 相似文献
4.
L.A. McKinnell E.O. Oyeyemi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
A new neural network (NN) based global empirical model for the foF2 parameter, which represents the peak ionospheric electron density, has been developed using extended temporal and spatial geophysical relevant inputs. It has been proposed that this new model be considered as a suitable replacement for the International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) model options currently used within the International Reference Ionosphere (IRI) model for the purpose of F2 peak electron density predictions. The most recent version of the model has incorporated data from 135 global ionospheric stations including a number of equatorial stations. 相似文献
5.
M.-L. Zhang W. Wan L. Liu J.K. Shi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
In this paper, data of (B0, B1) parameters deduced from the electron density profiles that are inverted from the ionograms recorded at Hainan (19.4°N, 109.0°E), China during a three year period from March 2002 to February 2005 are used to study the diurnal and seasonal variation of (B0, B1) parameters at low latitude. The observational results are compared with the IRI2001 model predictions. Variability study of (B0, B1) in terms of percentage ratio of the inter-quartiles to the median values and correlative analysis between (B0, B1) parameters and other ionospheric characteristics such as hmF2 and M(3000)F2 are also made. Our present study showed that: (1) for daytime hours, the IRI2001 model results with new table option (B0_Tab) is in a better agreement with the observational results (B0_Obs) than the IRI2001 model results with Gulyaeva option (B0_Gul) for summer season, whereas B0_Gul is in a better agreement with B0_Obs than B0_Tab for winter season. For nighttime, in general, B0_Gul is in a better agreement with B0_Obs than B0_Tab. For other occasions, both B0_Tab and B0_Gul showed some systematic deviations from the observational ones. Moreover, the deviations of B0_Tab and B0_Gul from B0_Obs showed opposite trends; (2) the monthly upper (lower) quartiles of (B0, B1) parameter showed a good linear relationship with the monthly median values, this makes it possible to do the regression analysis between the monthly upper (lower) quartiles and the monthly median values, which can give a measure of the variability of these parameters. In terms of the percentage ratio of the inter-quartiles to the median values, the variability of B0 showed a diurnal variation ranging between 22% and 36% with maximum value occurring at pre-sunrise hours, whereas the variability of B1 showed a diurnal variation ranging between 15% and 30% with higher value by daytime than at night; (3) B0 shows high linear correlative relationships with hmF2 and M(3000)F2 for most of the local time period of a day except for a few hours around midnight, whereas B1 showed high linear correlations with B0, hmF2 for daytime hours, but not for nighttime hours. This suggests that it maybe is possible to obtain the synthetic database of (B0, B1) parameter or to construct the model of (B0, B1) using database of hmF2 or M(3000)F2 which is much easier to obtain from experimental measurements. 相似文献
6.
Noraset Wichaipanich Pornchai Supnithi Mamoru Ishii Takashi Maruyama 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
In this paper, the F2-layer critical frequency (foF2) and peak height (hmF2) measured by the FM/CW ionosonde at Thailand equatorial latitude station, namely Chumphon (10.72°N, 99.37°E, dip 3.22) are presented. The measurement data during low solar activity from January 2004 to December 2006 are analyzed based on the diurnal, seasonal variation. The results are then compared with IRI-2001 model predictions. Our study shows that: (1) In general, both the URSI and CCIR options of the IRI model give foF2 close to the measured ones, but the CCIR option produces a smaller range of deviation than the URSI option. The agreement during daytime is generally better than during nighttime. Overestimation mostly occurs in 2004 and 2006, while underestimation is during pre-sunrise hours in June solstice in 2005. The peak foF2 around sunset is higher during March equinox and September equinox than the other seasons, with longer duration of maximum levels in March equinox than September equinox. Large coefficients of variability foF2 occur during pre-sunrise hours. Meanwhile, the best agreement between the observed foF2 and the IRI model is obtained in June solstice. (2) In general, The IRI (CCIR) model predicts the observed hmF2 well during daytime in June solstice from 2004–2006, but it overestimates during March equinox, September equinox and December solstice. For nighttime, the model overestimates hmF2 values for all seasons especially during March equinox and September equinox. However, the model underestimates hmF2 values during September equinox and for some cases during June solstice and December solstice at pre-sunrise. The agreement between the IRI model and the hmF2(M3000OBS) is worst around noontime, post-sunset and pre-sunrise hours. All comparative studies give feedback for new improvements of CCIR and URSI IRI models. 相似文献
7.
A.O. Akala E.O. Somoye A.B. Adeloye 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
This study examines the response of the African equatorial ionospheric foF2 to different levels of geomagnetic storms, using the foF2 hourly data for the year 1989 from Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N). The study also compares the observed data for the selected storm periods with the latest IRI model (IRI-2007). The foF2 values (both observed and predicted) show typical features of daytime peak and post-midnight minimum peak. The response of the ionospheric foF2 over Ouagadougou to storms events, during the night-time and post-midnight hours indicates negative responses of the ionospheric foF2, while that of the daytime hours indicates positive responses. For the investigation on the variability of the observed foF2 with respect to IRI-2007 model, with the exception of the analysis of the 20–22, October, 1989 data, where a midday peak was also observed on the first day, this study reveals two characteristic daily foF2 variability peaks: post-midnight and evening peaks. In addition, for all the geomagnetic storms considered, the URSI and CCIR coefficients of the IRI-2007 model show reasonable correspondence with each other, except for some few discrepancies. For instance, the event of 28–30 August, 1989 shows comparatively higher variability for the URSI coefficient, and at the foF2 peak values, the event of 20–22 October, 1989 shows that the CCIR coefficient is more susceptible to foF2 variability than the URSI coefficient. This study is aimed at providing African inputs for the future improvement of the IRI model. 相似文献
8.
基于低纬(海南)台站(19.5°N,109.1°E)电离层测高仪在2004年观测到的偶发E层(Es)临界频率(f0Es)和虚高(h'Es)数据,利用谱分析方法,给出了中国低纬地区Es层在全年和不同季节内的短周期变化特性.对全年数据谱分析表明,Es层除具有非常强的24h周期外,还具有显著的12h和8h周期.对不同季节内两个参数的谱分析进一步表明,8h周期主要出现在f0Es参数的春秋分季和夏末及在h'Es参数的几乎所有季节;6h周期主要出现在f0Es参数的11-12月.海南低纬Es层中具有显著的6h和8h周期特性,特别是这两个周期还能同时出现在冬季,这是以往研究中不曾发现的新结果.初步分析认为,Es层的6h和8h周期极可能是分别由1/4日和1/3日潮汐所造成的. 相似文献
9.
Chunhua Jiang Hui Hu Guobin Yang Jing Liu Zhengyu Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(10):3167-3176
Ionograms recorded at Puer station (PUR, 22.7°N, 101.05°E, Dip Latitude 12.9°N) in the Southwest of China from January 2015 to December 2016 were used to study characteristics of the F2 layer stratification at the northern equatorial ionization anomaly. Ionosonde observations show that the development of the F2 layer stratification is different under different conditions. Both the upward and downward movement of the F2 layer stratification could be observed. The F2 layer stratification could occur both at daytime and nighttime. The new cusp could originate from different positions on ionograms. Moreover, statistical results indicate that the F2 layer stratification occurred later in the winter than in other seasons at daytime, it occurred frequently in the local spring, and most of ionograms with the F2 layer stratification at post-midnight occurred in March and April. Our results also show that the F2 layer stratification has a correlation with solar activity. 相似文献
10.
Kh. Karami S. Ghader A. Raeen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
In the present work values of peak electron density (NmF2) and height of F2 ionospheric layer (hmF2) over Tehran region at a low solar activity period are compared with the predictions of the International Reference Ionosphere models (IRI-2001 and IRI-2007). Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran from July 2006 to June 2007 are used to perform the calculations. Formulations proposed by and are utilized to calculate the hmF2. The International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) options are employed to run the IRI-2001 and IRI-2007 models. Results show that both IRI-2007 and IRI-2001 can successfully predict the NmF2 and hmF2 over Tehran region. In addition, the study shows that predictions of IRI-2007 model with CCIR coefficient has closer values to the observations. Furthermore, it is found that the monthly average of the percentage deviation between the IRI models predictions and the values of hmF2 and NmF2 parameters are less than 10% and 21%, respectively. 相似文献
11.
Md Golam Mostafa Haris Haralambous Christina Oikonomou 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):337-347
This paper reports the diurnal, seasonal, and long term variability of the E layer critical frequency (foE) and peak height (hmE) derived from Digisonde measurements from 2009 to 2016 at the low-middle latitude European station of Nicosia, Cyprus (geographical coordinates: 35°N, 33°E, geomagnetic lat. 29.38°N, I = 51.7°). Manually scaled monthly median values of foE and hmE are compared with IRI-2012 predictions with a view to assess the predictability of IRI. Results show that in general, IRI slightly overestimates foE values both at low and high solar activity. At low solar activity, overestimations are mostly limited to 0.25?MHz (equivalent electron density, 0.775?×?103?el/m?3) but can go as high as 0.5?MHz (equivalent electron density, 3.1?×?103?el/m?3, during noon) around equinox. In some months, underestimations, though sporadic in nature, up to 0.25?MHz are noted (mostly during sunrise and sunset). At high solar activity, a similar pattern of over-/underestimation is evident. During the entire period of study, over-/under estimations are mostly limited to 0.25?MHz. In very few cases, these exceed 0.25?MHz but are limited to 0.5?MHz. Analysis of hmE reveals that: (1) hmE remains almost constant during ±2 to ±4?h around local noon, (2) hmE values are higher in winter than in spring, summer and autumn, (3) there are two maxima near sunrise and sunset with a noontime minimum in between. During the entire period of study, significant differences between observed hmE and the IRI predictions have been noted. IRI fails to predict hmE and outputs a constant value of 110?km, which is higher than most of the observed values. Over- and under estimations range from 3 to 13?km and from 0 to 3?km respectively. 相似文献
12.
R.G. Ezquer L.A. Scidá Y. Migoya Orué B. Nava M.A. Cabrera C. Brunini 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(7):1803-1818
Using vertical total electron content (VTEC) measurements obtained from GPS satellite signals the capability of the NeQuick 2 and IRI Plas models to predict VTEC over the low latitude and South American sector is analyzed. In the present work both models were used to calculate VTEC up to the height of GPS satellites. Also, comparisons between the performance of IRI Plas and IRI 2007 have been done. The data correspond to June solstice and September equinox 1999 (high solar activity) and they were obtained at nine stations. The considered latitude range extends from 18.4°N to ?64.7°N and the longitude ranges from 281.3°E to 295.9°E in the South American sector. The greatest discrepancies among model predictions and the measured VTEC are obtained at low latitudes stations placed in the equatorial anomaly region. Underestimations as strong as 40?TECU [1?TECU?=?1016?m?2] can be observed at BOGT station for September equinox, when NeQuick2 model is used. The obtained results also show that: (a) for June solstice, in general the performance of IRI Plas for low latitude stations is better than that of NeQuick2 and, vice versa, for highest latitudes the performance of NeQuick2 is better than that of IRI Plas. For the stations TUCU and SANT both models have good performance; (b) for September equinox the performances of the models do not follow a clearly defined pattern as in the other season. However, it can be seen that for the region placed between the Northern peak and the valley of the equatorial anomaly, in general, the performance of IRI Plas is better than that of NeQuick2 for hours of maximum ionization. From TUCU to the South, the best TEC predictions are given by NeQuick2.The source of the observed deviations of the models has been explored in terms of CCIR foF2 determination in the available ionosonde stations in the region. Discrepancies can be also related to an unrealistic shape of the vertical electron density profile and or an erroneous prediction of the plasmaspheric contribution to the vertical total electron content. Moreover, the results of this study could be suggesting that in the case of NeQuick, the underestimation trend could be due to the lack of a proper plasmaspheric model in its topside representation. In contrast, the plasmaspheric model included in IRI, leads to clear overestimations of GPS derived TEC. 相似文献
13.
J.R. Souza C.G.M. Brum M.A. Abdu I.S. Batista W.D. Asevedo Jr. G.J. Bailey J.A. Bittencourt 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
We describe a Parameterized Regional Ionospheric Model (PARIM) to calculate the spatial and temporal variations of the ionospheric electron density/plasma frequency over the Brazilian sector. The ionospheric plasma frequency values as calculated from an enhanced Sheffield University Plasmasphere–Ionosphere Model (SUPIM) were used to construct the model. PARIM is a time-independent 3D regional model (altitude, longitude/local time, latitude) used to reproduce SUPIM plasma frequencies for geomagnetic quiet condition, for any day of the year and for low to moderately high solar activity. The procedure to obtain the modeled representation uses finite Fourier series so that all plasma frequency dependencies can be represented by Fourier coefficients. PARIM presents very good results, except for the F region peak height (hmF2) near the geomagnetic equator during times of occurrence of the F3 layer. The plasma frequency calculated by IRI from E region to bottomside of the F region present latitudinal discontinuities during morning and evening times for both solar minimum and solar maximum conditions. Both the results of PARIM and the IRI for the E region peak density show excellent agreement with the observational values obtained during the conjugate point equatorial experiment (COPEX) campaign. The IRI representations significantly underestimate the foF2 and hmF2 compared to the observational results over the COPEX sites, mainly during the evening–nighttime period. 相似文献
14.
P.R. Fagundes V. Klausner J.A. Bittencourt Y. Sahai J.R. Abalde 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The occurrence of an additional F3-layer has been reported at Brazilian, Indian and Asian sectors by several investigators. In this paper, we report for the first time the seasonal variations of F3-layer carried out near the southern crest of the equatorial ionospheric anomaly (EIA) at São José dos Campos (23.2°S, 45.0°W; dip latitude 17.6°S – Brazil) as a function of solar cycle. The period from September 2000 to August 2001 is used as representative of high solar activity (HSA) and the period from January 2006 to December 2006 as representative of low solar activity (LSA). This investigation shows that during HSA there is a maximum occurrence of F3-layer during summer time and a minimum during winter time. However, during LSA, there is no seasonal variation in the F3-layer occurrence. Also, the frequency of occurrence of the F3-layer during HSA is 11 times more than during LSA. 相似文献
15.
Man-Lian Zhang Chunxu LiuWeixing Wan Libo LiuBaiqi Ning 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Global modeling of M(3000)F2 and hmF2 based on three alternative EOF (empirical orthogonal function) expansion methods is described briefly. Data used for the model construction is the monthly median hourly values of M(3000)F2 from the ionosonde/digisonde stations distributed around the world for the period of 1975–1985 and the hmF2 data of the same period converted from the measured M(3000)F2 based on the strong anti-correlation existing between them. Independent data of a low (1965) and a high (1970) solar activity year are used to validate the three alternative models based on different EOF expansion methods. Comparisons between the modeled results and observed data for both the low (1965) and high (1970) solar activity years showed good agreement for both M(3000)F2 and hmF2 parameters. Statistical analysis on the differences between model values and observed data showed that all the three alternative models (Model A, B and C) based on the different EOF expansion methods have better agreement with the observed data than the models currently used in IRI. All three alternative EOF based models have almost the same accuracy. Discussion on the preference of the three alternative EOF based models is given. 相似文献
16.
Yu N. Korenkov V.V. KlimenkoF.S. Bessarab 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
This paper presents the results of the numerical calculations thermosphere/ionosphere parameters which were executed with using of the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP)and comparison of these results with empirically-based model IRI-2001. Model GSM TIP was developed in West Department of IZMIRAN and solves self-consistently the time-dependent, 3-D coupled equations of the momentum, energy and continuity for neutral particles (O2, N2, O), ions (O+, H+), molecular ions (M+) and electrons and largescale eletric field of the dynamo and magnetospheric origin in the range of height from 80 km to 15 Earth’s radii. The empirically derived IRI model describes the E and F regions of the ionosphere in terms of location, time, solar activity and season. Its output provides a global specification not only of Ne but also on the ion and electron temperatures and the ion composition. These two models represent a unique set of capabilities that reflect major differences in along with a substantial approaches of the first-principles model and global database model for the mapping ionosphere parameters. We focus on global distribution of the Ne, Ti, Te and TEC for the one moment UT and fixed altitudes: 110 km, hmF2, 300 km and 1000 km. The calculations were executed with using of GSM TIP and IRI models for August 1999, moderate solar activity and quiet geomagnetic conditions. Results present as the global differences between the IRI and GSM TIP models predictions. The discrepancies between model results are discussed. 相似文献
17.
O.S. Oyekola 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Measurements of the critical frequency, foF2 recorded over Ibadan: 7.4°N, 3.9°E (geographic), 6°S (dip angle) have been compared with the International Reference Ionosphere (IRI-2007) model for solar maximum geomagnetically quiet conditions, with a view to determining what modifications might bring about better predictions for the model. Our results reveal that the present version of IRI essentially reproduces diurnal trends and the general features of the experimental observations for all seasons, except for nighttime June solstice periods, which the model seriously overestimated. The model errors ranging from 50% to 125% over the four seasons considered in this study. It is also indicated that the percentage relative deviations between the observed and the modeled values vary approximately from −11% to 12% (March), −34% to 11% (June), −16% to 12% (September), and −10% to 13% (December). An unexpected feature of foF2 is obvious and remarkable reduction in values during nighttime June solstice periods compared to that in other seasons. Relationship between equatorial vertical drift and foF2 is also investigated. However, cross correlation analysis reveals strong anti-correlation between vertical drift and critical frequency during the daytime hours, but exceptionally opposite is the case for the nighttime sector. The discrepancies which are noted, particularly during June solstice season are attributed to processes most likely within the thermosphere and from meteorological influences during quiet magnetic conditions. 相似文献
18.
Yekoye Asmare Tariku 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(7):2066-2074
This paper mainly discusses the improvement of performance of the International Reference Ionosphere (IRI) model in estimating the variation of the Vertical Total Electron Content (VTEC) over the mid latitude American regions during the relatively low (2008–2010) and relatively high (2012) solar activity years. This has been conducted employing the VTEC values obtained from the dual frequency ground based Global Positioning System (GPS) receivers located at Mineral Area Community College, MACC (37.85°N, 269.52°W) and Mississippi County Airport, MAIR (36.85°N, 270.64°W), and the latest versions of the IRI online model (IRI 2007, IRI 2012 and IRI 2016). The study mainly focuses to compare the trend of variability of the monthly and seasonal modeled VTEC values (IRI 2007 VTEC, IRI 2012 VTEC and IRI 2016 VTEC) with the corresponding measured VTEC values (GPS VTEC). The overall results show that the IRI VTEC values (almost in all versions of the model) are generally smaller than the GPS VTEC except after about 15:00 UT (09:00 LT) in the December solstice when the Sun shifts to the high solar activity. On the contrary, overestimations of the VTEC values by the model are observed in traversing from the low solar activity (2008) to high solar activity (2012) phase, especially after about 15:00 UT (09::00 LT) with the IRI 2016 version showing the highest. In general, the IRI 2007 and IRI 2012 versions show similar monthly and seasonal underestimations or overestimations showing that the two versions have almost similar performance. The IRI 2016 version is generally better in capturing both the diurnal and arithmetic mean GPS VTEC values with some exceptional months and seasons as compared to those of the IRI 2007 and IRI 2012 versions. 相似文献
19.
S.S. Rao Shweta Sharma R. Pandey 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(8):2031-2039
Efficacy of SAMI2 model for the Indian low latitude region around 75°E longitudes has been tested for different levels of solar flux. With a slight modification of the plasma drift velocity the SAMI2 model has been successful in reproducing quiet time ionospheric low latitude features like Equatorial Ionization Anomaly. We have also showed the formation of electron hole in the topside equatorial ionosphere in the Indian sector. Simulation results show the formation of electron hole in the altitude range 800–2500?km over the magnetic equator. Indian zone results reveal marked differences with regard to the time of occurrence, seasonal appearances and strength of the electron hole vis-a-vis those reported for the American equatorial region. 相似文献
20.
台风影响电离层F2区的一种可能机制 总被引:3,自引:1,他引:3
在台风期间,特别是台风登陆前后,强烈的海气、陆气相互作用会增强低层大气中的湍流活动,并可能导致大气湍流层顶的抬升.这种抬升会改变高层大气结构,从而影响高层大气中的光化学过程,最终造成对电离层的影响.在台风活动抬升了湍流层顶的前提下,利用一个一维电离层物理模型,模拟了日本中纬地区(45°N,142°E)电离层F2区的响应.模拟结果很好地定性解释了如下观测事实,台风期间,电离层f0F2会下降,对给定频率电波的反射面会抬升;同时还表明以上过程会导致hmF2上升,这表明台风期间湍流层顶的抬升可能是台风影响电离层F2区的一种十分有效的机制. 相似文献