共查询到20条相似文献,搜索用时 0 毫秒
1.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(9):1421-1426
Numerical simulations of two types of flares indicate that magnetic reconnection can provide environments favorable for various particle acceleration mechanisms to work. This paper reviews recent test particle simulations of DC electric field mechanism, and discusses how the flare particles can escape into the interplanetary space under different magnetic configurations. 相似文献
2.
B.V. Somov V.S. Titov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):183-185
In the frame of a simple self-consistent model for high-temperature turbulent current sheet (HTCS) /1/, three effects are considered. (i) Gradient instabilities create anamalous plasma diffusion across magnetic field and increase the power of energy release in HTCS. (ii) Penetration of a small transverse component of magnetic field into HTCS also can significantly increase an energy output of HTCS. (iii) There appears electric current circulating around a current sheet at a compression of longitudinal magnetic field. This current induces a Joule heat; however, a total flux of the longitudinal field remains constant. 相似文献
3.
G Einaudi R Lionello M Velli 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(12):1875-1878
Simulations of the evolution of kink modes in line-tied coronal loops are presented which demonstrate the occurrence of magnetic reconnection in the non-linear stage of the instability. In loops which do not carry a net axial current (and are confined by a potential purely axial field) the reconnection is limited to the initial current-carrying channel and no overall loss of confinement is observed. In loops which carry a net current on the other hand, reconnection progressively involves field lines at greater and greater distances from the axis and even regions where the field was initially potential, leading to a total disruption of the magnetic field topology. 相似文献
4.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(9):1407-1414
Magnetic reconnection occurs during eruptive processes (flares, CMEs) in the solar corona. This leads to a change of magnetic connectivity. Nonthermal electrons propagate along the coronal magnetic field thereby exciting dm- and m-wave radio burst emission after acceleration during reconnection or other energy release processes in heights of some Mm to ⩾700 Mm. We summarize the results of some case studies which can be interpreted as radio evidence of magnetic reconnection: under certain conditions, simple spectral structures (pulsation pulses, reverse drift bursts) are formed by simultaneously acting but widely spaced radio sources. Narrowband spikes are emitted as a side-effect during large-scale coronal loop collisions. In dynamic radio spectra, the lower fast mode shock formed in the reconnection outflow appears as type II burst-like but nondrifting emission lane. It has been several times observed at the harmonic mode of the local plasma frequency between 250 and 500 MHz and at heights of ≈200 Mm. 相似文献
5.
Noise in wireless systems from solar radio bursts 总被引:1,自引:0,他引:1
L.J. Lanzerotti D.E. Gary G.M. Nita D.J. Thomson C.G. Maclennan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2253-2257
Solar radio bursts were first discovered as result of their interference in early defensive radar systems during the Second World War (1942). Such bursts can still affect radar systems, as well as new wireless technologies. We have investigated a forty-year record of solar radio burst data (1960–1999) as well as several individual radio events in the 23rd solar cycle. This paper reviews the results of a portion of this research. Statistically, for frequencies f 1 GHz (near current wireless bands), there can be a burst with amplitudes >103 solar flux units (SFU; 1 SFU = 10−22 W/m2) every few days during solar maximum conditions, and such burst levels can produce problems in contemporary wireless systems. 相似文献
6.
S. Pohjolainen E. Valtaoja S. Urpo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(12):2337-2340
Gradual rise and fall type solar radio flares recorded at 37 GHz (8 mm wavelength) are analysed and compared with simultaneous soft and hard X-ray events. Emission measures and plasma temperatures were calculated from the GOES soft X-ray data, and optically thin thermal bremsstrahlung flux at 37 GHz was calculated assuming the same emitting volumes. The main emission mechanism behind the millimeter wave radio flares was determined to be thermal bremsstrahlung although many of the flares showed impulsive, non-thermal features. The radio flares were compared with simultaneous BATSE hard X-ray events, but significant temporal correlation was not found. It is suggested that there might be two different types of gradual radio flares, connected to gradual or more impulsive hard X-ray events. Another explanation for the observed two types would be different viewing angles to the emitting regions. 相似文献
7.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(10):1707-1711
Hard X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) of the October 29, 2003 GOES X10 two-ribbon flare are used together with magnetic field observations from the Michelson Doppler Imager (MDI) onboard SoHO to compare footpoint motions with predictions from magnetic reconnection models. The temporal variations of the velocity v of the hard X-ray footpoint motions and the photospheric magnetic field strength B in footpoints are investigated. The underlying photospheric magnetic field strength is generally higher (B ∼ 700–1200 G) in the slower moving (v ∼ 20–50 km s−1) western footpoint than in the faster (v ∼ 20–100 km s−1) moving eastern source (∼100–600 G). Furthermore, a rough temporal correlation between the HXR flux and the product vB2 is observed. 相似文献
8.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(9):1432-1438
The process of generation of upper-hybrid waves by electron beam with loss-cone distribution is considered. The necessary conditions of the double plasma resonance effect, which is considered to be one of the most probable formation mechanisms of the zebra patterns in the spectra of solar radio emission, are investigated. It is shown that this effect considerably affects excitation of waves by electrons with power-law energetic spectrum. Interpretation of observations and diagnostics of plasma for the April 21, 2002 event are performed. It is found that the zebra stripes consist of separate short pulses; there is a good correlation between the separate stripes (with a certain temporal shift). The conclusion about the impulsive mode of injection of energetic particles into the coronal loop is made. 相似文献
9.
M.R. Kundu R.G. Stone 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):261-270
Using the Clark Lake Radioheliograph data we present direct evidence that type III electron streams propagate in dense coronal streamers. We also present imaging observations of meter-decameter microbursts, which appear to be similar to those observed in hard X-rays. At meter-decameter wavelengths, these microbursts appear to be due to plasma radiation. From observations made with ISSE-3, we discuss the characteristics of hectometer and kilometer wavelength radio bursts. In particular, we show that from studies of type III storms that the exciter electrons propagate along spiral structures, where the density is enhanced and that there is an acceleration of the solar wind. We discuss type II bursts at kilometer wavelengths, compare them with meter type II bursts and discuss their association with interplanetary shocks. We show that the interaction between type III electron streams and shocks at kilometer wavelengths can provide information on the interplanetary shock geometry. Finally, we discuss the possibility that some shock associated (SA) events may be emissions caused by electrons accelerated lower in the atmosphere rather than high in the corona in type II shocks.Recent advances in solar research have resulted from new work on plasma radiation theory, new observations of active regions and flares across the electromagnetic spectrum and the availability of spacecraft in situ measurements of solar ejecta. In this paper, we review some results obtained with the Clark Lake multifrequency radioheliograph at meter-decameter wavelengths and from satellite multifrequency directive observations at hectometer and kilometer wavelengths. We present evidence that type III electrons propagate in dense coronal streamers, and that frequently observed microbursts (presumably of type III) at meter-decameter wavelengths are due to plasma radiation. We discuss observations of hectometer and kilometer type III radio storms which reveal information about active region structures, interplanetary magnetic field configuration, and solar wind acceleration. We also discuss kilometer type II bursts, interactions between type III electrons and interplanetary shocks, and present some new results on shock associated (SA) events. 相似文献
10.
B. Kalman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):81-85
Changes in the structure of the sunspot group and its magnetic field are studied in Hale Region 17644 (May 1981) in connection with the May 16 3B/X1 flare. The characteristic changes, also found in HR 16850 (May 1980) and HR 17098 (September 1980), are the following: Rapid motions of umbrae of opposite polarity in the vicinity of the magnetic zero line, parallel to this line, but in opposite direction. Appearence of new small spots before the flare, leading to a more complicated field structure. Simplification of the magnetic structure after the flare in some days, i.e. decrease of spot areas in the affected territory and the straightening of the magnetic zero line. 相似文献
11.
R.B Dahlburg S.K Antiochos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(12):1781-1784
We present the results of 3D numerical simulations of initially discrete magnetic fluxtubes interacting via magnetic reconnection. The initial topology consists of two orthogonal fluxtubes. Each fluxtube has a uniform twist, force-free magnetic field specified by the Gold-Hoyle model. The fluxtubes are then forced together by an initial flow configuration consisting of two superimposed stagnation point flows. We observe three distinct types of interaction, which depend on the twist and on the Lundquist numbers, between the fluxtubes. For low twist the fluxtubes experience an elastic collision. For a higher twist complete reconnection is observed. If the Lundquist numbers are raised fluxtube tunneling occurs. 相似文献
12.
Marcos E. Machado 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(11):115-133
We review the recent advances in the field of energy transfer and dissipation in solar flares. New observations and theoretical results have been obtained during the SMY and discussed in several workshops. Important new results have been provided by imaging hard X-ray and radio observations, high resolution spectra in the soft X-ray range, polarization measurements and combined optical, gamma- and X-ray data. We summarize results on the following topics: a) interpretation of hard X-ray bursts; b) heating and cooling of X-ray flare plasmas; c) chromospheric heating and evaporation; d) white-light flares. An overall picture of the importance of transfer processes is given, together with prospects for development of future research topics. 相似文献
13.
M. Pick A. Raoult 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):175-178
The comparative study of radiation in the different spectral ranges, including X-ray and radio observations, can establish constraints for the electron acceleration/injection mechanisms. This paper will focus on the activity prior and during the impulsive phase of solar flares. Observations give evidence for electron acceleration prior the impulsive phase. The association between type III groups and hard X-ray bursts becomes closer with increasing starting frequency of the former observed during the impulsive phase. It is shown that pure type III burst groups, when they are X-ray associated, do not correspond to an intense X-ray emission. At the opposite, the type III/V events can be associated with strong X-ray emission. Radioheliograph observations bring constraints on the geometry of the injection/acceleration site. 相似文献
14.
B.V. Somov T. Kosugi H.S. Hudson T. Sakao S. Masuda 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2439-2450
The basic ideas to model the large solar flares are reviewed and illustrated. Some fundamental properties of potential and non-potential fields in the solar atmosphere are recalled. In particular, we consider a classification of the non-potential fields or, more exactly, related electric currents, including reconnecting current layers. The so-called ‘rainbow reconnection’ model is presented with its properties and predictions. This model allows us to understand main features of large flares in terms of reconnection. We assume that in the two-ribbon flares, like the Bastille-day flare, the magnetic separatrices are involved in a large-scale shear photospheric flow in the presence of reconnecting current layers generated by a converging flow. 相似文献
15.
A.I. Podgorny I.M. Podgorny 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(12):1929-1932
The patterns of reconnection in the Earth magnetotail and in the solar corona above the active region are presented. The electric field and field-aligned currents (FAC) generation in the current sheet are discussed. 相似文献
16.
Cornelis de Jager 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):303-306
A coronal explosion is a density wave observed in X-ray images of solar flares. The wave occurs at the end of the impulsive phase, which is the time at which the flare's thermal energy content has reached its maximum value. It starts in a small area from where it spreads out, mainly into one hemisphere, with velocities that tend to rapidly decrease with time, and which are between ~ 103 and a few tens of km s?1. We interpret them as magneto-hydrodynamic waves that (mainly) move downward from the low corona into denser regions. 相似文献
17.
18.
R.T. James McAteer Peter T. GallagherPaul A. Conlon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this. 相似文献
19.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(10):1743-1751
Proton and electron heating of a flaring atmosphere is compared in a kinetic approach for the particles ejected from a non-neutral reconnecting current sheet (RCS) located above the top of reconnected flaring loops in a two-ribbon flare. Two kinds of high-energy particles are considered: particles accelerated by a super-Dreicer electric field and those ejected from the reconnection region as neutral outflows, or separatrix jets. The beam electrons are assumed to deposit their energy in Coulomb collisions and Ohmic heating of the ambient plasma particles by the electric field induced by the precipitating beams. The protons are assumed to deposit their energy in generation of kinetic Alfvén waves (KAWs), which, in turn, dissipate due to Cherenkov resonant scattering on the ambient plasma electrons. The beam electrons are found to provide a fast (within a few tenth of a second) heating of the atmosphere that is well spread in depth from the corona to the lower chromosphere. The protons are shown to precipitate to the lower atmosphere much slower (up to few seconds for beam and up to 10–20 s for slow jets). Slow jet protons provide heating of the two compact regions: the first located at the top of a flaring loop just below the RCS, and the second one appearing at the transition region (TR) and upper chromosphere; fast beam protons deposit their energy in the TR and chromosphere only. 相似文献
20.
D.C. Ellison R. Ramaty 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):137-141
First order Fermi shock acceleration of electrons, protons and alpha particles is compared to observations of energetic particle events. For each event, a unique shock compression ratio produces spectra in good agreement with observation. The simple model predicts that the acceleration time to a given energy will be approximately equal for electrons and protons and, for reasonable solar parameters, can be less than 1 second to ~ 100 MeV. 相似文献